Вернёмся к тахионам и к бозону Хиггса. Тахионы проявляют нестабильность в любой точке пространства, и это явление коллективное. Тахионы подобны группе альпинистов, идущих в связке. Если один тахион теряет равновесие и начинает соскальзывать в пропасть, он увлекает за собой расположенных поблизости «товарищей».
Бозон Хиггса придуман для описания тахионного конденсата. Тахионная конденсация — это термин, описывающий процесс сваливания тахионов с хребта в долину. Представим себе, что упавшие с хребта альпинисты не разбиваются насмерть, а чудесным образом спасаются и мягко приземляются в долине. Там у них «Клуб упавших альпинистов». Они устали после тяжёлого восхождения и не имеют сил вскарабкаться обратно на гору. Вместо этого они всей толпой бродят вдоль склона, периодически кто-нибудь из них пытается залезть на склон, но соскальзывает обратно. Примерно так же ведут себя тахионы, сконденсировавшиеся в какой-то точке пространства-времени: квантовые флуктуации тахионного конденсата и есть бозоны Хиггса.
Отличие поведения бозона Хиггса от поведения членов «Клуба упавших альпинистов» состоит в том, что движение бозона Хиггса происходит не в обычном четырёхмерном мире, а в дополнительных пространственно-временных измерениях.
Несмотря на то что бозон Хиггса долгое время сохранял статус гипотетической частицы, он служит иллюстрацией прекрасно разработанной физической теории, возможно, лучшей из всего, что было придумано за последние десятилетия. Эта теория носит название Стандартная модель. Слово «стандартная» в данном случае означает, что эта теория является общепризнанной, а слово «модель» указывает на предварительный, незаконченный характер теории. Стандартная модель не ограничивается описанием тахионного конденсата. Среди прочего она объясняет роль бозона Хиггса в возникновении масс у субатомных частиц: электронов и кварков.
В 2010 году в экспериментах на ускорителе элементарных частиц, называемом Тэватрон, была обнаружена однопроцентная разница в числе мюонов и антимюонов, образующихся при распаде более тяжёлой частицы, что являлось указанием на существование бозона Хиггса. Ожидалось, что подтвердить или опровергнуть данную гипотезу помогут эксперименты на Большом адронном коллайдере. Надо заметить, что ещё двумя десятилетиями ранее в Техасе планировалось построить для этих целей сверхпроводящий суперколлайдер, но в 1993 году Конгресс вытащил вилку финансирования проекта из розетки госбюджета, сэкономив американским налогоплательщикам десять миллиардов долларов, благодаря чему США уступили своё лидерство в области высокоэнергетической физики старушке Европе, и 4 июля 2012 года ЦЕРН с большой помпой отрапортовал о долгожданном открытии бозона Хиггса.
Странная математика суперсимметрии
Большие надежды, возлагаемые на БАК, связаны с тем, что с его помощью, возможно, будет обнаружена суперсимметрия. Это особый тип симметрии, который позволяет «уравновесить» теорию суперструн. Суперсимметрия делает это путём удаления злокачественных тахионов способом, который вкратце был описан в четвёртой главе. Ещё суперсимметрия устанавливает отношения между гравитонами и фотонами и гарантирует стабильность D0-бран, о которых шла речь в пятой главе. Несмотря на то что с точки зрения формальной логики суперсимметрия и теория струн различны, между ними есть много общего. Открытие суперсимметрии будет означать, что теория струн на верном пути. И хотя существуют скептики, утверждающие, что суперсимметрия может существовать сама по себе и теория струн для этого необязательна, мне кажется, что существование суперсимметрии без теории струн было бы слишком невероятным совпадением, чтобы в него поверить.
Итак, что же такое суперсимметрия? Мы постоянно ходили вокруг этого вопроса на протяжении всей книги. Что ж, настало время ответить на него. Суперсимметрия оперирует дополнительными измерениями довольно своеобразным способом. Измерения, которыми мы обычно оперируем, включая и дополнительные, образуют метрическое пространство, то есть пространство, обладающее мерой, или попросту расстоянием. Расстояние — это число: 2 сантиметра, 10 километров и т. п. Если сложить два расстояния, то в результате тоже получится расстояние. При перемножении двух расстояний получается площадь. Но дополнительные измерения, которыми оперирует суперсимметрия, не выражаются числами — по крайней мере обычными числами. Они выражаются антикоммутативными числами, являющимися краеугольным камнем странной математики суперсимметрии. Антикоммутативные числа играют важную роль в описании электронов, нуклонов, кварков и прочих частиц, называемых фермионами. Несмотря на то что я ещё не дал определения терминам «антикоммутативность» и «фермион», я буду пока использовать их, просто чтобы называть вещи своими именами, не углубляясь в дебри очень сложной математики. Дополнительные измерения суперсимметрии носят название фермионных измерений.