Кварки очень похожи на электроны и в то же время очень не похожи. Они испускают виртуальные глюоны, которые могут быть описаны в терминах «хромо-электрического поля», сообщающего кваркам, куда им следует двигаться.
Но виртуальные глюоны сильно взаимодействуют между собой, что принципиально отличает их от фотонов. Из-за этого взаимодействия хромо-электрическое поле вытягивается в тонкую квантово-хромодинамическую струну — КХД-струну, — протянутую от одного кварка к другому. Два кварка, связанные КХД-струной, образуют частицу, называемую мезоном. Изучая свойства мезонов, мы можем вывести законы поведения КХД-струн, которое оказывается похожим на поведение струн в теории струн. Отдельные исследования старше, чем теория струн и квантовая хромодинамика! Они дали пищу для размышлений о том, что при помощи струн можно описать поведение субатомных частиц.
Вверху: электрическое поле протона направлено радиально во все стороны от центра протона. Внизу: хромо-электрическое поле кварка принимает форму КХД-струны и оканчивается на антикварке
Современная инкарнация этих спекуляций является одним из аспектов струнно-калибровочной дуальности и её отношения к КХД. Главное различие между современной теорией струн и КХД состоит в том, что струны рассматриваются как фундаментальные объекты, в то время как КХД-струны являются результатом взаимодействия виртуальных глюонов. Однако основной урок струнной дуальности в том, что нельзя жёстко рассматривать одну теоретическую конструкцию как фундаментальную, а другую как производную: в зависимости от обстоятельств вторая может оказаться более приемлемым языком для описания реальности.
Представьте себе кварк, рождённый в жёстком процессе и пробивающий себе дорогу сквозь кварк-глюонную плазму подобно пуле, движущейся сквозь воду. Идеи, стоящие за КХД-струнами, всё ещё сохраняют своё значение: кварк окружён виртуальными глюонами, эти глюоны взаимодействуют между собой, проявляя тенденцию к образованию КХД-струны. Но помимо этого кварки и глюоны, составляющие горячий рой, взаимодействуют с движущимся кварком так же, как и виртуальные глюоны, которые он испускает. Этот горячий рой не позволяет КХД-струне полностью сформироваться. В целом кварк выглядит как головастик с хвостом из недосформировавшейся КХД-струны. Физика движения головастика сквозь толщу воды напоминает физику взаимодействия горячего роя с виртуальными глюонами. Насколько я знаю, квантовая хромодинамика не даёт точного количественного описания этой картины, но картина в чём-то схожа с тем, что описывает струнно-калибровочная дуальность. Струна спускается от кварка к горизонту чёрной дыры, и кварк тащит её за собой, в то время как хвост струны оказывается «застрявшим» в горизонте. Струна тянет кварк назад, потому что он не может вытащить её из горизонта чёрной дыры. В конце концов кварк либо вырывается наверх и останавливается, либо падает в чёрную дыру. В обоих случаях ему не удаётся улететь далеко.
Картина, которую я нарисовал, должна хорошо описывать тяжёлые кварки, такие как c-кварк, имеющий массу, в полтора раза превышающую массу протона, или b-кварк, который тяжелее протона в четыре раза. Эти кварки не присутствуют в обычной материи, но рождаются при столкновениях тяжёлых ионов. «Обычные кварки», составляющие протоны и нейтроны, рождаются при столкновениях тяжёлых ионов гораздо более обильно, чем тяжёлые кварки. Попытки расширить описание «струнных хвостов» на случай обычных кварков пока что не имеют успеха.
Кварк, движущийся сквозь горячую кварк-глюонную плазму, тащит за собой хвост из КХД-струны, которая в пятимерном пространстве спускается вниз, достигает в конце концов горизонта чёрной дыры и, «цепляясь» на него, тормозит движение кварка
Подведём черту: струнно-калибровочная дуальность даёт нам оценку длины свободного пробега тяжёлого кварка в кварк-глюонной плазме. Для того чтобы решить, насколько хороша эта оценка, нам нужны новые экспериментальные данные.
На пути получения новых экспериментальных данных нас подстерегают две трудности. Первая состоит в том, что экспериментаторы не могут засунуть микроскоп внутрь кварк-глюонной плазмы и увидеть, где именно останавливается летящий сквозь неё тяжёлый кварк, вместо этого они имеют сгусток плазмы, в котором тяжёлый кварк претерпевает многочисленные столкновения за время, сравнимое с тем, которое требуется свету, чтобы пройти расстояние, равное размеру ядра золота. Этот очень короткий промежуток времени составляет примерно 4×10−23 секунды, или одну сорокатриллионтриллионную долю секунды. Всё, что могут наблюдать экспериментаторы, — это тысячи частиц, вылетающих из сгустка плазмы. Меня всегда потрясало то, как им удаётся выудить информацию о поведении c-кварка из всего этого мусора. Я думаю, экспериментаторы должны понимать, почему теоретики относятся к их выводам с большой долей скепсиса. Они могут быть на 99,99% уверены в своём оборудовании, но даже ошибка в 0,01% при таком уровне шума сводит на нет точность вычисления длины свободного пробега c-кварка в кварк-глюонной плазме.