Я ещё не рассказал, откуда берётся энергия, высвобождаемая при ядерном распаде. Общее количество нуклонов не изменяется: их 236 как до реакции, так и после. И всё же суммарная масса вступающих в реакцию частиц больше, чем суммарная масса продуктов реакции. Это очень важное исключение из правила, согласно которому масса — это, в сущности, количество нуклонов. Дело в том, что нуклоны в ядрах бария и криптона связаны гораздо сильнее, чем в ядре урана-235. Более сильная связь означает меньшую массу. Слабо связанное ядро урана-235 имеет небольшой избыток массы, ожидающий освобождения в виде энергии. По сути, энергия при ядерном распаде освобождается за счёт перегруппировки протонов и нейтронов в более плотную упаковку.
Один из проектов в современной ядерной физике ставит перед собой цель узнать, что произойдёт, если заставить тяжёлые ядра типа ядер урана участвовать в гораздо более бурно протекающих реакциях, чем обычные реакции распада, описанные выше. По причинам, в которые я не стану вдаваться, экспериментаторы больше предпочитают работать с ядрами золота, чем с ядрами урана. Когда два ядра золота сталкиваются на скоростях, близких к скорости света, они полностью разрушаются. В главе 8 я подробно расскажу о плотном и горячем состоянии вещества, которое образуется в ходе этой реакции.
Таким образом, уравнение E = mc2 говорит нам о том, что энергия покоя чего угодно зависит только от его массы, поскольку скорость света является константой. Извлечь часть этой энергии из урана-235 проще, чем из большинства других веществ. Но с фундаментальной точки зрения энергия покоя присуща всем формам материи — она есть и у камней, и у воздуха, и у воды, и у деревьев, и у людей.
Прежде чем мы перейдём к квантовой механике, позвольте мне сделать небольшое отступление и рассмотреть уравнение E = mc2 в более широком контексте. Это уравнение фигурирует в специальной теории относительности, изучающей влияние движения на измерения времени и пространственных координат. Специальная теория относительности в свою очередь является подмножеством Общей теории относительности, описывающей гравитацию и искривлённое пространство-время. Теория струн является частью Общей теории относительности и квантовой механики и также включает уравнение E = mc2. Струны, браны и чёрные дыры — все повинуются этому уравнению. Например, в пятой главе я покажу, как тепловая энергия браны вносит вклад в её массу. Было бы неправильно утверждать, что уравнение E = mc2 следует из теории струн, но оно неразрывно связано с другими аспектами её математического каркаса.
Глава 2
Квантовая механика
Получив степень бакалавра по физике, я провёл год в Кембридже, изучая физику и математику. Кембридж — это место с зелёными лужайками, свинцовым небом и многовековыми традициями высокой научной школы. Я учился в колледже Св. Иоанна, история которого насчитывает пять веков. Помню, там был прекрасный рояль, стоявший на одном из верхних этажей первого корпуса — старейшего здания Кембриджа. В числе вещей, которые я на нём исполнял, был «Экспромт-фантазия» Шопена. Главная часть этого произведения содержит два ритмических рисунка — полиритмию 4:3. Партии обеих рук исполняются в одном темпе, но на каждые четыре ноты для правой руки приходятся три ноты для левой, что придаёт всей композиции эфирное, текучее звучание.
Это прекрасная часть, и она заставляет меня размышлять о квантовой механике. Чтобы объяснить почему, мне придётся сначала рассказать немного об этой замечательной теории, но я не собираюсь излагать квантовую механику целиком, а только скажу о тех концепциях, которые вызывают у меня реминисценции с музыкой, такой как «Экспромт-фантазия» Шопена.
В квантовой механике возможны любые движения, но некоторые — предпочтительнее остальных. Эти предпочтительные движения называются квантовыми состояниями. Они обладают определёнными частотами. Частота — это количество раз в секунду, которые что-то поворачивается или повторяется. В «Экспромт-фантазии» партия правой руки имеет более высокую частоту, чем партия левой руки, и эти частоты относятся как четыре к трём. То, что «вращается» в квантовой механике, имеет более абстрактную природу. Технически — это фаза волновой функции. Вы можете думать о волновой функции как о секундной стрелке часов, которая делает полный оборот за одну минуту. Фаза волновой функции делает то же, что и секундная стрелка, — вращается, только с гораздо более высокой частотой. Скорость этого вращения характеризует энергию системы, о чём я позже расскажу более подробно. Простые квантовые системы, такие как атом водорода, обладают частотами, находящимися в достаточно простых отношениях друг к другу. Например, фаза одного квантового состояния может сделать девять оборотов, в то время как фаза другого — четыре. Это очень похоже на полиритмию 4:3 шопеновской «Экспромт-фантазии». Но частоты в квантовой механике гораздо более высокие. Например, характерная частота атома водорода имеет порядок 1015 оборотов в секунду. Это намного быстрее, чем исполнение «Экспромт-фантазии», где правая рука играет не более 12 нот в секунду.