Выбрать главу

Ритмическое обаяние «Экспромт-фантазии» вряд ли можно назвать её главным очарованием — по крайней мере, не в моём исполнении. Её мелодия парит над печальными басами, а ноты сливаются вместе в хроматическом размытии. При этом гармония медленно смещается, оттеняя отрывочное порхание главной темы. Субтильная полиритмия 4:3 обеспечивает лишь фон для самого запоминающегося произведения Шопена. Так же и квантовая механика, имея в своей основе дискретный набор осциллирующих квантовых состояний, на макроуровне размывается в красочный и сложный мир, доступный нашему непосредственному восприятию. Эти квантовые частоты имеют совершенно реальное отражение в нашем мире. Например, жёлто-оранжевый свет уличного фонаря имеет определённую частоту, связанную с колебаниями электронов в атомах натрия. Именно эта частота и определяет оранжевый цвет фонаря.

В оставшейся части главы я сфокусируюсь на трёх аспектах квантовой механики: на принципе неопределённости, на атоме водорода и на фотонах. По ходу дела мы столкнёмся с энергией в её новом квантово-механическом амплуа, тесно связанном с частотой. Аналогия с музыкой очень удачна для объяснения роли частоты в квантовой механике, но, как мы увидим в следующем разделе, эта теория содержит и другие ключевые идеи, для объяснения которых не так легко найти аналогии в повседневной жизни.

Неопределённость

Принцип неопределённости является одним из краеугольных камней квантовой механики. Он утверждает, что положение частицы и её импульс никогда не могут быть измерены одновременно. Предыдущее утверждение не вполне корректно, поэтому позвольте мне объяснить более развёрнуто. При любом измерении координаты мы имеем некоторую неопределённость результата, обозначаемую как Δx (произносится «дельта икс»). Допустим, измеряя отрез ткани мягким портновским метром, вы способны определить его длину с точностью не более 0,5 см. Тогда неопределённость вашего измерения составит: Δx ≈ 0,5 см. Это означает, что «дельта икс» составляет приблизительно полсантиметра. Портной может позвонить своему коллеге и сказать: «Гена, отрез ткани, который ты мне прислал, имеет длину два метра с точностью до полусантиметра». (Разумеется, я имею в виду европейского портного, потому что американские портные оперировали бы футами и дюймами.) Другими словами, портной считает, что длина отреза ткани составляет x = 2 м, а неопределённость этой длины: Δx ≈ 0,5 см.

С импульсом мы все хорошо знакомы, но лучше понять, что это за зверь, можно, посмотрев глазами физика на столкновение двух тел. Если два бильярдных шара столкнулись лоб в лоб и полностью остановились, значит, до столкновения они имели одинаковые импульсы. Если после столкновения один шар всё ещё движется в первоначальном направлении, но медленнее, значит, он имел больший импульс, чем второй. Импульс и масса связаны простой формулой: p = mv. Но давайте пока не будем углубляться в детали. Суть в том, что импульс является чем-то, что вы можете измерить, и это измерение имеет некоторую неопределённость, которую мы обозначим как Δp.

Принцип неопределённости утверждает, что Δp × Δxh/4π, где h — некоторая константа, называемая постоянной Планка, а π = 3,14159... — хорошо известное нам соотношение между длиной окружности и её диаметром. Я предпочитаю произносить: «дельта пэ дельта икс больше или равно аш на четыре пи», но если вы предпочитаете «научно-литературный» физико-математический язык, то вам следует говорить: «произведение неопределённостей импульса и координаты частицы не меньше отношения постоянной Планка к четырём пи». Теперь, надеюсь, понятно, почему я сказал, что утверждение, приведённое в начале этого раздела, не вполне корректно: вы можете одновременно измерить координату и импульс частицы, но неопределённость этих двух измерений никогда не может быть меньше, чем допускает уравнение Δp × Δxh/4π.