Чтобы лучше понять, как работает принцип неопределённости, представьте себе, что мы поймали частицу в ловушку, имеющую размер Δx. Положение частицы известно нам теперь с неопределённостью Δx (при условии, что частица находится внутри ловушки). Принцип неопределённости утверждает, что мы не можем узнать величину импульса этой частицы с точностью большей, чем позволяет упомянутое выше соотношение. Количественно неопределённость импульса должна быть такой, чтобы удовлетворить неравенству Δp × Δx ≥ h/4π. Как мы увидим в следующем разделе, прекрасный пример реализации принципа неопределённости представляет собой атом. Более наглядный пример привести трудно, поскольку типичная неопределённость координаты гораздо меньше, чем размер любого предмета, который можно взять в руки. Это происходит из-за того, что величина постоянной Планка крайне мала. Мы вернёмся к ней ещё раз, когда будем говорить о фотонах, и тогда я сообщу вам её численное значение.
Несмотря на то что обычно при обсуждении принципа неопределённости мы говорим об измерениях координат и импульса, его суть гораздо глубже. Он представляет собой внутреннее ограничение, накладываемое на понятия координаты и импульса. В конечном итоге импульсы и координаты — это не числа. Это более сложные объекты, называемые операторами; и я не стану пытаться их здесь описывать, а только скажу, что операторы являются широко используемыми математическими конструкциями, только более сложными, чем числа. Принцип неопределённости вытекает из различия между числами и операторами. Величина Δx — это не просто неопределённость измерения координаты, это фундаментальная неустранимая неопределённость положения частицы. Иными словами, принцип неопределённости отражает не недостаток информации, а фундаментальную «нечёткость» субатомного мира.
Атом
Атомы состоят из электронов, вращающихся вокруг атомных ядер. Атомные ядра, как я уже рассказывал, состоят из протонов и нейтронов. Простейшим случаем, с рассмотрения которого мы и начнём, является атом водорода, состоящий из одного электрона, вращающегося вокруг ядра, состоящего из одного протона. Размер атома водорода имеет порядок 10−10 метра. Единицу измерения 10−10 метра называют также ангстремом. Говоря, что один ангстрем равен 10−10 метра, мы имеем в виду, что в одном метре 1010, или десять миллиардов, ангстрем. Размер атомного ядра примерно в сто тысяч раз меньше. Смысл утверждения, что размер атома имеет порядок одного ангстрема, состоит в том, что электрон крайне редко удаляется от ядра на расстояние больше одного ангстрема. Неопределённость положения электрона — Δx — также порядка одного ангстрема, поэтому невозможно сказать, с какой стороны от ядра в конкретный момент времени находится электрон. Принцип неопределённости требует, чтобы неопределённость импульса электрона — Δp — удовлетворяла неравенству Δp × Δx ≥ h/4π. Это приводит к тому, что электрон в атоме водорода должен обладать некоторой средней скоростью, порядка одной сотой скорости света, но направление этой скорости в каждый конкретный момент времени принципиально неопределённо. Неопределённость импульса электрона является, в сущности неопределённостью самого импульса, поскольку не определено его направление. Общая картина выглядит так, что электрон пойман в ловушку кулоновским притяжением ядра, но квантовая механика запрещает ему находиться в этой ловушке в состоянии покоя. Вместо этого он непрерывно «блуждает» в переделах ловушки, и характер его блуждания описывается математическим аппаратом квантовой механики. Область блуждания электрона и определяет размер атома. Если бы электрону разрешили спокойно сидеть на одном месте, он бы сразу упал на ядро под действием кулоновской силы притяжения. В результате все материальные предметы сжались бы до ядерной плотности, что было бы весьма некомфортно. Таким образом, квантовый запрет на неподвижность электронов внутри атомов является большим благом для нас.