Мы знаем, что магнитное поле формируется вокруг токонесущего провода. В частности, магнитные поля формируются и вокруг проводов, подводящих ток к пластинам конденсатора. Но от пластины к пластине никакой ток не течет, и с наивной точки зрения отсюда должно следовать, что между пластинами не должно быть никакого магнитного поля. Максвелл счел, что это не согласуется с его пониманием устройства конденсаторов, и предложил великолепное решение: растущее электрическое поле порождает круговое магнитное поле точно так же, как это делает ток. Эта идея стала важнейшим шагом за рамки исходной картины, в которой поля порождаются зарядами и на них же действуют: теперь стало ясно, что поля порождаются полями.
А Фарадею еще до этого было понятно, что увеличивающееся магнитное поле генерирует круговое электрическое, – этот принцип лежит в основе работы электрических генераторов. Два из четырех уравнений Максвелла, по сути, формализуют эти взаимно-обратные соотношения между электрическим и магнитным полями. Остальные два уравнения проще: они выражают тот факт, что у магнитных полей нет ни источников, ни стоков, а для электрических полей единственными источниками или стоками служат положительные и отрицательные электрические заряды. Все уравнения Максвелла являются дифференциальными уравнениями, то есть они записаны в терминах скорости изменения электрических и магнитных полей во времени, а также описывают изменения этих полей в пространстве. Дифференциальные уравнения описывают поведение полей в очень малых областях пространства-времени. Никаких действий на расстоянии в уравнениях Максвелла нет. Всё описание заключено в рамках локального притяжения и отталкивания близлежащими полями друг друга. Величайшим триумфом Максвелла стало то, что его уравнения объяснили существование света. Свет, как стало понятно Максвеллу, является комбинацией меняющихся электрических и магнитных полей, в которой пространственные изменения электрического поля вызывают временные изменения магнитного, и наоборот. Физические постоянные, содержащиеся в уравнениях Максвелла, описывают силу электростатического и магнитного взаимодействий, но если их скомбинировать определенным образом, они дают численное предсказание значения скорости света – и это предсказание можно проверить экспериментально.
Заглядывая вперед, скажем, что впоследствии нам придется глубоко обдумать две критически важные параллели между электромагнетизмом и общей теорией относительности. Обе эти теории включают в себя фарадеевскую концепцию поля, и обе, в конечном счете, выражаются дифференциальными уравнениями, описывающими поведение полей, которые подразумевают некоторую форму излучения. В случае электромагнитного излучения электрические поля порождают магнитные, и наоборот – в самоподдерживающемся каскаде, распространяющемся в пространстве-времени в соответствии с уравнениями Максвелла. У этого каскада есть характерная длина волны, на протяжении которой электрические и магнитные поля меняются от нуля до своего максимального значения, затем вновь до нуля и до следующего максимума, и снова до нуля. Видимый свет при этом представляет собой частный случай такого излучения с длиной волны около полумикрона. Затем с ростом длины волны мы переходим к инфракрасному излучению, микроволнам, радиоволнам, а двигаясь в коротковолновую область, получаем ультрафиолетовое излучение, рентген и гамма-лучи.
Рис. 1.5. Световой луч – это возмущение электрического (Е) и магнитного (B) поля, распространяющееся в одном направлении со скоростью света c. Если считать, что на этом рисунке изображена истинная длина волны, то есть несколько сантиметров, то это излучение микроволнового диапазона, чуть более коротковолновое, чем то, что используется в обычной микроволновке.