Выбрать главу

Парадокс близнецов возникает вследствие следующего неверного рассуждения. Все движения относительны. Поэтому, с точки зрения Алисы, именно Боб улетел от нее, а потом вернулся. Разве она не должна точно так же, как и он, ожидать, что измеренное им время окажется меньше, чем по ее часам?

Чтобы увидеть, в чем недостаток этого рассуждения, нам следует точно определить различие между Алисой и Бобом: оно состоит в том, что Алиса испытала ускорение, когда разворачивалась, чтобы отправиться в обратный путь, а Боб этого не делал. Например, мы могли позволить Бобу свободно парить в пустоте в течение всего времени путешествия Алисы. С точки зрения Лагранжа, именно поведение Боба было «оптимальным», так как оно было абсолютно естественным и не требовало никакого внешнего вмешательства. Значит, то, что именно его собственное время оказалось большим, оправданно.

Есть замечательный вариант парадокса близнецов, в котором учитываются гравитационные эффекты (рис. 2.3). Допустим, что Алиса и Боб живут в глубоком гравитационном колодце, где они оба ходят в школу. У них трудное домашнее задание, которое им надо сдать через 48 часов, например, в 9:00 утра в понедельник. Из своего опыта с парадоксом близнецов Боб заключает, что больше всего времени на выполнение задания у него будет, если он станет как можно меньше двигаться. Поэтому он идет в школу очень медленным и спокойным шагом, все это время работая над своим заданием, и приходит туда в понедельник к 9:00 утра. Беспокойная Алиса соображает, что ей лучше прыгнуть в свою ракету и поскорее вылететь из гравитационного колодца: ведь отсутствие гравитационного красного смещения даст ей больше времени на выполнение задания. Но она опасается, что замедление времени, которое она испытает при полетах вверх и вниз, окажется более значительным. Согласно принципу оптимального собственного времени, чтобы максимизировать свое время, Алисе следует делать то, что при этих обстоятельствах делала бы инертная материя. А каково естественное поведение инертной материи? Она, как известно, любит покой! Получается, что план Боба минимизировать свои движения и идти в школу очень медленно правильный? Но все меняет присутствие тяготения. Вещество в гравитационном колодце вовсе не любит покоиться. Ему больше нравится падать. В присутствии тяготения для Боба вовсе не будет естественным тащиться в школу еле-еле: он может так поступать, только если находится на вершине какой-нибудь кучи вещества, которая в гравитационном колодце лежит еще глубже него. Если мы хотим, чтобы кусок инертного вещества отправился от дома Боба и Алисы в 9:00 утра в субботу и спустя 48 часов оказался бы у их школы, мы должны его запустить по изогнутой дугой траектории, чтобы ровно в 9:00 утра в понедельник он приземлился у школы. Сообразив все это, довольная Алиса залезает в свою ракету, жмет на газ, отчего ее ракета получает мощный импульс, на который уходит весь запас горючего, и весь остаток выходных летит по инерции, по дороге усердно работая над своим заданием[3]. Ее ракета теперь не более чем баллистический снаряд, то есть, если не считать начального импульса на старте, она движется под действием только одной силы тяготения. Другими словами, она находится в состоянии свободного падения.

Рис. 2.3. Боб делает свое домашнее задание на ходу, неторопливо шагая по направлению к школе. Алиса садится в ракету и делает уроки в полете. Если Алисина ракета получает ускорение одним импульсом и затем весь оставшийся путь до школьного звонка в понедельник утром летит по инерции, тогда у Алисы будет больше времени на подготовку домашнего задания, чем у Боба.

Эксперименты Алисы и Боба с замедлением времени помогают проиллюстрировать эйнштейновский принцип эквивалентности. В простейшей форме этот принцип состоит в том, что действие ускорения неотличимо от действия тяготения.

Ключ к разрешению исходной, негравитационной формы парадокса близнецов состоит в том, что именно Алисе приходится испытывать ускорение при развороте для возвращения к Бобу. Если мы позаботимся о том, чтобы это ускорение было медленным и постоянным, а не резким, тогда оно будет эквивалентно тому, что Алиса проведет все свое путешествие в гравитационном поле. Главная же особенность гравитационного варианта парадокса близнецов заключается в том, что Алиса проводит свои выходные в состоянии свободного падения, в то время, как Боб свои – в гравитационном поле. Таким образом, в этих двух версиях парадокса Алиса и Боб, по сути, меняются ролями.

Более рутинный пример принципа эквивалентности – это когда в лифте мы чувствуем себя тяжелее, если лифт с ускорением поднимается вверх, и легче, если он с ускорением опускается. Если лифт с ускорением поднимается в пустом пространстве в отсутствие каких-либо гравитирующих тел поблизости, то наши наблюдения внутри лифта идентичны тем, которые мы проводим, когда лифт остается покоящимся в гравитационном поле Земли. Точно так же, если лифт свободно падает в гравитационном поле Земли, мы испытываем такую же невесомость внутри него, какую мы бы испытывали, если бы свободно висели в пустом космическом пространстве.

вернуться

3

Вас может беспокоить, что на собственное время сильно повлияет исходное ускорение. По сути, исходя из принципа оптимального собственного времени, мы должны сравнивать траектории с одинаковыми начальным и конечным положениями, но, возможно, с различными начальными скоростями. Чтобы дать полное и точное объяснение парадокса близнецов и его гравитационного варианта, мы должны позволить Алисе иметь некоторую начальную скорость в момент, когда мы запускаем ее часы. А когда она возвращается в точку, где ее ждет Боб, она обладает некоторой конечной скоростью. Мы должны остановить часы в момент, когда Алиса и Боб встречаются, а значит, мы можем не беспокоиться о том, как именно она будет тормозить.

полную версию книги