Выбрать главу
Как это происходило

В приведённом здесь рассказе использованы материалы моей статьи «Малыши и математика, непохожая на математику» (журнал «Знание-Сила», № 8 за 1985 год).

Участников нашего кружка четверо: мой сын Дима и трое его друзей — Женя, Петя и Андрюша. Дима — самый младший, ему 3 года и 10 месяцев; самый старший — Андрюша, ему скоро должно исполниться пять.

Мы рассаживаемся вокруг журнального столика. Я, конечно, волнуюсь: как я тут с ними со всеми управлюсь? Для начала говорю детям, что мы будем заниматься математикой, и для поддержания авторитета добавляю, что математика — это самая интересная в мире наука. Тут же получаю вопрос:

— А что такое наука?

Приходится объяснять:

— Наука — это когда много думают.

— А я думал, что фокусы будут, — несколько разочарованно произносит Андрюша. Его дома предупредили, что дядя Саша будет с ними сегодня заниматься, и будут фокусы.

— Фокусы тоже будут, — говорю я и, сворачивая вступление, перехожу к делу.

Вот первая задача. Я кладу на стол 8 пуговиц. Не дожидаясь моих указаний, мальчики вместе кидаются их считать. Видимо, несмотря на юный возраст, некоторое представление о том, что такое математика, у них уже есть: математика — это когда считают. Когда шум утих, я могу сформулировать собственно задачу:

— А теперь положите на стол столько же монет.

Теперь на столе оказывается ещё 8 монет. Мы кладём монеты и пуговицы в два одинаковых ряда, друг напротив друга.

— Чего больше, монет или пуговиц? — спрашиваю я.

Дети смотрят на меня несколько недоумённо; им не сразу удаётся сформулировать ответ:

— Никого не больше.

— Значит, поровну, — говорю я. — А теперь смотрите, что я сделаю.

И я раздвигаю ряд монет так, чтобы он стал длиннее.

— А теперь чего больше?

— Монет, монет больше! — хором кричат ребята.

Я предлагаю Пете сосчитать пуговицы. Хоть мы их уже считали четыре раза, Петя ничуть не удивляется моему заданию и подсчитывает количество пуговиц в пятый раз:

— Восемь.

Предлагаю Диме сосчитать монеты. Дима считает и говорит:

— Тоже восемь.

— Тоже восемь? — подчёркиваю я голосом. — Значит, их поровну?

— Нет, монет больше! — решительно заявляют мальчики.

По правде говоря, я заранее знал, что ответ будет именно таким. Эта задача — только одна из бесчисленных серий задач, которые давал в своих экспериментах детям-испытуемым великий швейцарский психолог Жан Пиаже (о «феноменах Пиаже» немного рассказывается в следующем разделе). В своих опытах он установил: маленькие дети не понимают того, что нам с вами кажется самоочевидным — если несколько предметов как-нибудь переставить или переместить, то их количество от этого не изменится. Итак, я знал заранее, что скажут дети. Знал, но почему-то не приготовил никакой разумной реакции. А как поступили бы вы, читатель? Что бы вы сказали детям?

К сожалению, самый распространённый приём, которым пользуются в такой ситуации почти все взрослые, состоит в том, чтобы начать детям изо всех сил что-то втолковывать. «Ну как же так! — с наигранным удивлением говорит взрослый. — Откуда же их могло стать больше? Ведь мы же никаких новых монет не добавляли! Ведь мы их только раздвинули — и всё. Ведь раньше же их было поровну — вы же сами говорили! Значит, их никак не могло стать больше. Конечно же (выделяем голосом), монет и пуговиц осталось поровну!»

Старания напрасны — такая педагогика никуда не ведёт. Точнее, ведёт в тупик. Во-первых, не надейтесь, что ваша логика в чём-нибудь убедит ребёнка. Логические структуры он усвоит ещё позже, чем закон сохранения количества предметов. Пока этого не произойдёт, логические рассуждения не покажутся ему убедительными. Убедительной является только интонация вашего голоса. А она покажет ребёнку лишь то, что он опять оказался не на высоте и что-то сделал не так. Дети сдаются не сразу, их здравый смысл не так-то легко сломить. Но если насесть как следует, можно добиться того, что они перестанут опираться на собственный ум и наблюдательность, а будут пытаться угадать, чего желает от них взрослый. Взрослые вообще предъявляют детям множество необъяснимых требований: почему-то нельзя рисовать на стене; почему-то надо идти ложиться спать, когда игра в самом разгаре; почему-то нельзя спрашивать: «А когда этот дядя уйдёт?». Вот и сейчас происходит что-то аналогичное: хотя я прекрасно вижу, что монет больше, чем пуговиц, но почему-то полагается отвечать, что их поровну. Отношение к математике как к некоему ритуалу, в котором нужно произносить определённые заклинания в определённом порядке, зарождается в школе и прекрасно доживает до университета, где его можно встретить даже у студентов-математиков.