Так что же всё-таки делать? Вообще не задавать подобных вопросов, что ли, если уж нельзя прокомментировать ответ?
Напротив, задавать вопросы как раз нужно. Очень полезно также обменяться мнениями: «А ты, Женя, как думаешь? А ты, Петя? А почему? А насколько монет стало больше?» Можно даже наравне с остальными высказать и свою точку зрения, но очень осторожно и ненавязчиво, снабдив всяческими оговорками типа «мне кажется» и «может быть». Иными словами, весь свой авторитет взрослого нужно употребить не на то, чтобы закрепить за этим авторитетом абсолютную власть единственно правильного суждения, а на то, чтобы убедить ребёнка в важности и ценности его собственных поисков и усилий. Но ещё интереснее натолкнуть его на противоречия в его собственной точке зрения.
— А сколько монет надо забрать, чтобы снова стало поровну?
— Две монеты надо забрать.
Забираем две монеты; считаем: пуговиц восемь, а монет шесть.
— А теперь чего больше?
— Теперь поровну.
Очень хорошо. Я снова раздвигаю монеты пошире и задаю тот же вопрос. Теперь уже оказывается, что шесть монет — это больше, чем восемь пуговиц.
— А почему их стало больше?
— Потому что вы их раздвинули.
Мы опять отбираем две монеты; потом ещё раз. Наконец, картинка становится такой, как показано на рис. 2.
Рис. 2. В верхнем ряду лежат 8 пуговиц, в нижнем — 2 монеты. Чего больше, монет или пуговиц?
В этот момент вдруг завязывается яростный спор. Одни мальчики по-прежнему считают, что монет больше, другие вдруг «увидели», что больше пуговиц. Пожалуй, самое время прерваться и перейти к другой задаче; пусть дальше думают сами.
Я был среди тех, кто говорил, что монет все равно больше. В первый раз я просто согласился со всеми остальными, а потом просто говорил не думая. Все предыдущие разы так было правильно (т. е. папа с этим соглашался), поэтому у меня не было причины менять мнение и в последний раз — Дима
Все эти мысли и идеи пришли ко мне далеко не сразу, так что в своём рассказе я забежал вперёд — и в будущие свои размышления, и в будущие занятия. Эта задача ещё многократно возникала у нас в разных обличьях. Было у нас, например, две армии, которые никак не могли победить друг друга, потому что у них было поровну солдат. Тогда одна из них раздвинулась, солдат у неё стало больше, и она начала побеждать. Увидев это, вторая армия раздвинулась ещё шире и т. д. (Закончить историю можно в соответствии с собственной фантазией.) Ещё был Буратино, которого Лиса Алиса и Кот Базилио пытались обмануть, раздвигая пять золотых монет и утверждая, что их стало больше. Я научился не ждать лёгких побед. Всё равно раньше чем через два — три года дети не усвоят закон сохранения количества предметов, как бы вы их ни учили. Да самое главное, это вовсе и не нужно! Я уверен: от этих скороспелых знаний пользы ровно столько же, сколько от преждевременных родов. Всему своё время, и не следует опережать события, в том числе и в области воспитания интеллекта. (Признаю, что эта точка зрения высказана здесь в несколько демагогической форме. Но аргументы в её пользу — а их немало — будут обильно рассыпаны по дальнейшему тексту.) Однако, повторяю, все эти мысли были потом. А тогда, на первом занятии, какое-то интуитивное озарение удержало меня от «объяснений», и я просто перешёл к следующей задаче.
На столе шесть спичек. Складываю из них различные фигурки и прошу ребят по очереди сосчитать, сколько здесь спичек. Каждый раз их оказывается шесть штук… Нет, я слишком увлёкся схоластическими рассуждениями и стал писать как-то по-канцелярски. Давайте вернёмся в живую детскую аудиторию, давайте увидим, как это происходит в жизни.
Каждый новый результат подсчёта встречается настоящим взрывом восторга и хохота. Вот уже Андрюша и Женя кричат, что всегда получится шесть. Вот уже Дима довольно невежливо рвёт у меня из рук спички, чтобы самому сложить какую-то вычурную фигурку, а Петя, напротив, очень вежливо спрашивает, не могу ли я ему дать ещё спичек. Ещё чуть-чуть — и их веселье перерастёт в неуправляемое детское буйство. Надо их как-то удержать, и внимательно выслушать Андрюшу с Женей («Почему вы думаете, что всегда будет шесть?»), и к тому же не упускать новые повороты мысли: ведь тут как раз Дима сложил трёхмерную фигурку — колодец (рис. 3).