Не следует превращать эту книгу в психологическое попурри (к тому же не очень квалифицированное). Но я всё же вернусь ещё раз к феноменам Пиаже и перескажу один опыт, который — единственный — привёл к частичному успеху и к усвоению закона сохранения. Речь идёт о «познавательных конфликтах» Яна Смедслунда (они описаны, в частности, в упоминавшейся выше книге Джона Флейвелла). Цитирую:
«Если, например, данный испытуемый был склонен полагать, что удлинение шарика увеличивает количество пластилина, а убавление кусочка уменьшает его количество, экспериментатор производил сразу и ту, и другую операцию […] Подобная процедура была выбрана для того, чтобы заставить испытуемого приостановиться, заставить его колебаться между взаимно конфликтующими стратегиями [выделено мной — А. 3.]; автор ожидал, что в результате ребёнок будет медленно склоняться к более простой и последовательной схеме убавления-прибавления […]».
Весьма характерно, что в этих опытах ребёнку ничего не объясняли и ничего не проверяли на весах. «Научить» удалось четырёх детей из тринадцати, и «разучить» их обратно потом не удалось.
Я знаю за собой такое свойство — делать далеко идущие выводы при недостаточных основаниях; а также и порой противоречить самому себе (совсем недавно твердил, что нет у нас такой цели — научить ребёнка законам сохранения, и вдруг вроде бы пытаюсь объяснить, как это можно было бы сделать). Неважно! Я хочу возвести в принцип, в основу моей педагогики вот эти слова: заставить приостановиться, заставить колебаться между взаимно конфликтующими стратегиями. Этот подход я противопоставляю другому, который исходит из того, что интеллект — это умение быстро решать головоломки. Рискуя уже в который раз впасть в возвышенный тон, я бы сказал: наша цель — воспитание такой породы людей, которую можно было бы назвать человек задумывающийся.
Конкретные примеры будут дальше.
Передо мной увлекательнейшая книжка со скучным названием «Математическое моделирование в экологии: историко-методологический анализ». Авторов пятеро: В. Н. Тутубалин, Ю. М. Барабашева, А. А. Григорян, Г. Н. Девяткова, Е. Г. Угер; лидером команды несомненно является Валерий Николаевич Тутубалин, известный математик, а также и известный критик применений математики в других науках. Вроде бы тема не имеет отношения к тому, что мы здесь обсуждаем. Но именно в этой книге я впервые нашёл чёткую формулировку того, что долго и безуспешно пытался высказать сам — того, как следует относиться к теоретическим построениям. По отношению к психологии это, мне кажется, ещё более верно (и важно), чем по отношению к экологии.
Среди прочего в книге рассматриваются классические уравнения Лотки-Вольтерра. Исходная идея достаточно проста. Имеются, скажем, лисы и кролики, причём лисы поедают кроликов. Последних становится всё меньше, и у лис возникает дефицит еды. Теперь уменьшается численность лис; жизнь у кроликов становится менее опасной, и теперь уже их численность возрастает. У лис изобилье еды, и их количество начинает расти; число кроликов опять падает, и всё начинается сначала. Эта модель довольно легко переводится на язык дифференциальных уравнений. Удача: уравнения решаются в явном виде (редкий в этой теории случай), и получаются аккуратные циклы на фазовой плоскости и аккуратные колебания, если рассматривать обе численности как функцию времени.
Теория готова; теперь надо её проверять экспериментально. Натурные эксперименты, т. е. измерения численностей видов (не обязательно лис и кроликов, но любых двух видов, один из которых поедает другой, например, щук и карасей) в живой природе, прямо скажем, ни к чему разумному не приводят. Это и понятно: слишком много вмешивается посторонних факторов. Попытки как-то выделить и учесть влияние этих факторов оказываются слишком сложными и в итоге неубедительными. Есть ещё возможность проведения лабораторного эксперимента, где все факторы строго контролируются, да и виды выбираются такие — вроде дрожжей — с которыми гораздо легче иметь дело, чем со зверями. Но даже и в этом случае статистическая обработка данных проведена не очень квалифицированно (это 30-е годы, математическая статистика только создавалась), и придти к определённым выводам трудно. В районе Гудзонова залива даже было обнаружили колебания численности зайцев и рысей. Но вот беда: циклы на фазовой плоскости крутились в другую сторону — как если бы хищниками были зайцы, а жертвами — рыси. Статья на эту тему саркастически называлась «Едят ли зайцы рысей?».