Одним словом, подтвердить теорию на опыте не удаётся. Каков же вывод? Выбросить её в корзину? Некоторые философы — критики науки — считают именно так. Но авторы книги — не философы, а работающие учёные, и они приходят к совершенно противоположным выводам. Ничего подобного, говорят они. В процессе попыток подтвердить (опровергнуть, уточнить, развить, видоизменить) теорию Лотки-Вольтерра специалисты произвели множество весьма полезных измерений и приобрели совершенно бесценный опыт. Он, быть может, и не выражается в виде простых уравнений; но всё же сегодня экологи знают гораздо больше, чем в 20-х годах прошлого века. Без этого исходного толчка они просто не знали бы, с какого конца приниматься за дело, что и зачем измерять. Они так до сих пор и оставались бы на уровне общих деклараций типа «всё в природе взаимосвязано».
Следует только иметь в виду, что каждый автор концепции вкладывает в своё детище так много души, что потом уже верит в неё как в Священное Писание. Хорошо мне, дилетанту: я могу жонглировать разными, в том числе и противоречащими друг другу теориями, могу сам изобретать новые на пустом месте (или почти) и назавтра отрекаться от них. Среди психологических теорий есть такие, которым я стопроцентно доверяю: примером являются феномены Пиаже. Есть такие, в которые я не верю ни на грош; к ним относится, в частности, распространённая в нашей стране «теория поэтапного формирования умственных действий», а также то, как тот же Пиаже объяснял освоение ребёнком родного языка (читайте на эту тему превосходную книжку: Steven Pinker «The Language Instinct: How the Mind Creates Language»). Но если относиться к теориям без прозелитизма, то интересны они все, так как все дают пищу для ума — и материал для задач!
Авторы книги об экологии рассказывают нам такую историю-притчу. Небольшая группа путешествует по берегам и островам Белого моря. Знающие люди сказали, что на некотором острове имеется пресноводное озеро, в котором окунь прекрасно клюёт на макароны. А может, мы как раз на этом острове? Как же пройти к озеру? Идти напролом по карельской тайге, перемежаемой горами и болотами — небольшое удовольствие. Идея («теория»)! Вода из озера должна куда-то деваться; наверное, из него выпадает ручей; а вдоль ручья может идти тропа. Идём вдоль берега моря; и в самом деле, вскоре обнаруживается ручей, а вдоль него — тропа. Всё прекрасно! Поднимаемся по тропе вдоль ручья. Вскоре, однако, ручей исчезает вовсе, тропа вместе с ним, «и лезем мы куда-то на высокую гору, с которой ничего, кроме леса, не видно. Некоторое время бродим без цели и смысла, вдруг каким-то образом попадаем на тропу, которая и выводит к озеру». И окуни там в самом деле великолепные! Мораль: теория нужна не для того, чтобы правильно отражать реальность, а для того, чтобы начать что-то делать — а дальше видно будет. (Хотя, как отмечают авторы в другом месте, правильная теория всё же лучше, чем неправильная.)
Так что пора и мне «начать что-то делать» и от болтовни на общие темы вернуться к нашему кружку.
2
Кружок с мальчиками — первый год
Как я уже упоминал неоднократно, я начал вести кружок в марте 1980 года, но записывать содержание занятий стал только с февраля 1981 года. Первые 20 занятий «для вечности» утеряны, тут уж ничего не поделаешь; собственно дневник начинается с 21-го занятия.
Важное пояснение. К каждому из занятий предпослан заголовок; но его не следует воспринимать слишком серьёзно. На занятии обычно бывало несколько разных задач, а заголовок отражает лишь одну из них, чаще всего основанную на новой идее или примечательную по какой-то иной причине. Иногда, впрочем, он связан вообще не с задачей, а с каким-то происшествием или новым поворотом событий.
Занятие 21. Лист Мёбиуса
4 февраля 1981 года (среда). 1030-1100 (30 мин.). Дима, Петя, Женя, Андрюша.
Задание 1. На их глазах разрезал лист на 4 полоски, из которых мы склеили (с моей помощью) 4 листа Мёбиуса.
Для читателя-нематематика должен пояснить, что такое лист Мёбиуса. Если взять узкую длинную полоску бумаги и склеить её концами «обычным способом», то получится цилиндр: он показан на рис. 10 слева. Если же предварительно перевернуть один из концов на 180°, получится фигура, показанная на том же рисунке справа. Она и называется листом Мёбиуса. У цилиндра есть две поверхности — внешняя и внутренняя; их можно, например, покрасить в два разных цвета. А вот у листа Мёбиуса только одна поверхность. Попробуйте закрасить каким-нибудь цветом его внутреннюю сторону — и вы незаметно перейдёте на внешнюю.