Две цифры на картинке были написаны как-то непонятно (я раньше этого не замечал). Я предложил ребятам определить, что это за числа. Никто из них не догадался, что можно из известной суммы в строке (34) вычесть сумму трёх известных чисел — и так получить четвёртое. Вместо этого они действовали методом проб, однако обычно угадывали требуемое число с одной-двух попыток.
Задание 2. Центральная симметрия. Я сказал ребятам, что мы с ними уже рассматривали симметрию относительно прямой линии (зеркальца), а ещё бывает другой вид симметрии, при котором у симметричной фигуры есть центр. На клетчатой бумаге я нарисовал центр, а потом ставил в разных местах точки, чёрточки, кружочки — и иногда рисовал симметричную фигуру сам, а иногда давал ребятам. Дима — это начинает входить у него в обычай — вместо того, чтобы выполнить моё задание, сказал, что он сам придумал другое задание[20], и стал рисовать какую-то кривулю, а потом ей центрально-симметричную, но из-за сложной формы кривой и из-за нетвёрдой руки невозможно было определить, правильно он выполняет задание или нет. С трудом я его уговорил, что его задача очень трудная и нужно сначала научиться решать более лёгкие задачи.
Потом я предложил ему преобразовать треугольник, и он нарисовал образ не центрально-симметричным, а осесимметричным, т. е. не перевернул его вверх ногами. Я показал, как надо его рисовать правильно (рис. 66), и мы обсудили почему.
Рис. 66. Пример центральной симметрии
После этого я показал ребятам картинки из книги Германа Вейля «Симметрия» и из сборника «Узоры симметрии». Мы отыскивали осе-симметричные и центрально-симметричные фигуры; я сказал, что чем больше у фигуры симметрий, тем она красивее.
Среди картинок мы нашли рисунки снежинок. Дима очень удивился:
— Что это, снежинки?
Я сказал:
— Да, только сильно увеличенные.
Мальчики договорились пойти на улицу с лупой и рассматривать снежинки (к сожалению, ничего путного из этого не вышло, так как снег был слежавшийся).
Потом мы с Петей часто ловили падающие и ещё не испорченные снежинки и их рассматривали. — Дима.
Наконец, мы стали строить на круглой мозаике центрально-симметричную фигуру (с учётом цвета фишек). Вот тут бы мне догадаться и построить снежинку! Но вместо этого наша фигура имела только центр симметрии и никаких осей. Ребята справлялись с заданием очень хорошо, ошибок практически не допускали. Боря[21] участвовал вместе с нами.
После занятия, когда мальчики уже одевались на улицу, я рассказал им о Кеплере и о том, что он в качестве новогоднего подарка другу написал математическую работу «О снежинке, или Новогодний дар». Только тогда мне пришла в голову идея о возможности «новогоднего» занятия. На нём можно было бы ещё вырезать снежинку из бумаги.
Занятие 43. О некоторых свойствах сложения
9 января 1982 года (суббота). 1120-1200 (40 мин.). Дима, Петя, Женя.
На этот раз я сказал, что вчера на английском у них было новогоднее занятие; после этого каждый получил в подарок пластмассовую снежинку. Я взял Димину снежинку и всем её показал; сказал, что наше сегодняшнее занятие тоже будет новогодним.
Задание 1. Симметрии снежинок. Я сказал ребятам, что снежинка очень красивая, потому что у неё много симметрий, и попросил их показать, какие они видят симметрии. Они нашли не только очевидные оси, идущие вдоль лучей, но и менее очевидные, идущие между лучами (оси АА' и ВВ' на рис. 67).
Рис. 67. Симметрия снежинки
Потом я спросил, есть ли у снежинок центр симметрии. Ребята сказали, что есть. После этого я показал висящую на стене вырезанную Аллой к Новому году снежинку из бумаги и сказал, что она тоже очень симметричная и очень красивая, только в одном отношении не похожа на настоящую снежинку: у настоящей снежинки всегда бывает 6 лучиков, а у этой — 8. Затем я объяснил, почему снежинку из 8 лучиков легче вырезать из бумаги, чем из 6: три раза сложишь — получится восьмушка. Некоторое время мы поспорили, как надо складывать бумагу, чтобы получилось 6 лучиков. Потом я показал, как это сделать. У Димы затряслись руки — так ему захотелось что-нибудь тут же вырезать. Но я сначала сам решил обрезать край, чтобы из квадрата сделать круг в качестве заготовки; Дима, однако, не дождался, пока я это сделаю, и начал складывать другой лист бумаги, я же, воспользовавшись этим, дорезал снежинку сам. К сожалению, полученная фигура имела всего три оси симметрии вместо шести и поэтому не была центрально-симметричной (рис. 68); я не продумал этот вопрос заранее, так как вся ситуация с листом бумаги и с вырезанием произошла экспромтом. Я скомкал эту тему (комкать снежинку не стал) и поспешил скорее перейти к мозаике.
20
Действительно, я и диссертацию защитил скорее по своей собственной задаче, чем по задаче моего руководителя… —