Выбрать главу

Кое-кто называет такой подход бесчеловечным. Некоторым кажется, что, если компьютеры станут играть главную роль в принятии решений, люди окажутся на обочине и будут выглядеть жалкими. Мы понимаем, что никого не радует мысль лишиться возможности принимать решения[158] и чувствовать себя кем-то вроде слуги компьютера. Однако значит ли это, что нужно и дальше незаслуженно выпускать заключенных на свободу или по ошибке оставлять их в тюрьме, лишь бы только судьи и комитеты, занимающиеся досрочным освобождением, могли продолжать работать так, как для них привычно? Значит ли это, что число неверных медицинских диагнозов должно и дальше оставаться выше, чем могло бы быть, лишь бы только врачи и психологи продолжали работать так, как они привыкли? Что компании должны и дальше принимать на работу неподходящих людей, лишь бы только менеджеры, проводящие собеседования, продолжали считать себя умными?

Нам кажется, что ответ на все эти вопросы – нет. Правильные решения очень важны для нормального существования общества: они помогают делать так, чтобы нужные ресурсы (от поездок на работу до здравоохранения) попадали к нужным людям в нужном месте в нужное время. Стандартное партнерство в понимании Хаммера и Чампи, в котором компьютеры ведут документацию, а HiPPO выносят оценки и принимают решения, часто не самый лучший способ этого добиться.

Сейчас вы уже, вероятно, не особо удивитесь, если мы скажем, что люди весьма плохо предсказывают будущее. В конце концов, прогнозирование и принятие решений почти неразделимые действия. Чтобы принять хорошее решение, обычно нужен точный прогноз в отношении некоторых аспектов будущего – иначе говоря, мы должны знать, что произойдет, если мы поступим так или иначе. Соответственно, если мы плохи в чем-то одном, то, очевидно, также плохи и в другом. И правда, многие ошибки Системы 1 и ее попытки срезать углы мешают нам делать хорошие прогнозы.

В 1984 году политолог Филип Тетлок и его коллеги взялись за многолетний проект: они собирались оценить точность прогнозов во многих сферах, таких как политика, экономика и международные отношения. Результаты проведенного исследования, как и многих других, упомянутых в этой главе, поразительны и не допускают различных толкований. После проверки более 82 тысяч прогнозов Тетлок обнаружил, что по точности предсказаний «люди едва превосходят шимпанзе»[159], бросающего дротики в мишень.

Это серьезная причина для беспокойства, поскольку мир бизнеса построен на предсказаниях. Многие из них вполне конкретны, например, как поведут себя определенные акции; какими окажутся направление и величина изменений будущих кредитных ставок; сколько смартфонов удастся продать в определенной стране в следующем году. Во многих других случаях прогнозы неявно заложены в предполагаемый план действий. Так, смена дизайна сайта строится на неявном предположении, что посетителям больше понравится новый вариант, и то же самое касается смены оформления в офисах филиалов банка. Яркий запуск какого-либо продукта строится на важном предположении, что клиенты отдадут ему предпочтение, а маркетинговая кампания подразумевает прогнозирование того, как их можно сформировать.

Что такое хорошо?

Разумеется, не все прогнозы оказываются неверными. Тетлок установил, что некоторые люди – он называет их суперпрогнозистами – действительно регулярно делают предсказания, более точные, чем просто случайный выбор варианта. Они берут информацию из многих источников и, что может быть более важным, демонстрируют способность рассматривать ситуации с разных точек зрения. Менее точные прогнозисты обычно имеют одну точку зрения во всех своих анализах (и упрямые консерваторы, и фанатичные либералы чаще дают плохие политические прогнозы). Тетлок называет первую из упомянутых групп (более успешных, разносторонних аналитиков) «лисами», а вторую – «ежами». Эти термины он взял у древнегреческого поэта Архилоха: «Многое знает лиса, еж – одно, но важное»[160]. Он рекомендует везде, где только можно, опираться на лис, а не на ежей[161]. Лис легко узнать по многоаспектным и многоплановым рассуждениям и анализам. Их можно также выявить по достигнутым результатам. Люди, которые делали много точных прогнозов (причем проверяемых), с большой вероятностью являются лисами.

вернуться

158

В одном эксперименте психолог Себастьян Бобадилья-Суарез и его коллеги обнаружили, что люди согласны платить, чтобы сохранить возможность принимать решения о выделении денежных средств, – даже если они знают, что получили бы больше денег, если бы согласились на принятие такого решения компьютером. Люди любят, когда у них есть власть принимать решения. См.: Sebastian Bobadilla-Suarez, Cass R. Sunstein, and Tali Sharot, “The Intrinsic Value of Controclass="underline" The Propensity to Under-delegate in the Face of Potential Gains and Losses,” SSRN, February 17, 2016, https://papers.ssrn.com/sol3/papers2.cfm?abstract_id=2733142.

вернуться

159

P. Tetlock, Expert Political Judgment: How Good Is It? How Can We Know? (Princeton, NJ: Princeton University Press, 2005), P52.

вернуться

160

«Еж и лиса» – это также название эссе философа Исайи Берлина (точнее, «Еж и лиса. Эссе о взглядах Толстого на историю». Прим. перев.), который разделил мыслителей на две категории: тех, кто в течение карьеры развивает одну важную идею, и тех, кто развивает много разных идей.

вернуться

161

Исходный текст Архилоха утрачен; приведенная выше фраза цитировалась как поговорка еще в Античности. При этом неизвестен смысл, вложенный в строки самим поэтом. Сейчас ее обычно трактуют так: «лисы» – разносторонние или разбрасывающиеся личности, применяющие различные тактические и стратегические приемы, тогда как «ежи» ставят на одну простую и эффективную стратегию. Заметим, что такое понимание противоречит тому, как использует свои термины Тетлок: у него ежами называются неудачники. Прим. перев.