Прогнозы и эксперименты нельзя автоматизировать так же просто, как это делается с принятием решений. Однако в них применяются данные и хорошо работает строгий анализ. Это основные инструменты Системы 2, а также второй эры машин. Так что Системе 1 и ее компонентам, интуиции, суждениям и личному опыту нужно отстраниться от прогнозирования как минимум настолько же, насколько, как мы выяснили ранее, это оправдано в случае с принятием хороших решений. Иными словами, HiPPO должны стать вымирающим видом в организациях.
Резюме
• Двадцать лет стандартного партнерства разума и машин показали, что мы нередко слишком сильно полагаемся на человеческие суждения, интуицию и чутье.
• Почему человеческие суждения так часто оказываются ошибочными? Потому что работа нашей быстрой, не требующей усилий Системы 1 подвержена различного рода искажениям. И самое плохое, она не осознает, что совершает ошибку, и вынуждает рациональную Систему 2 придумывать убедительные оправдания тому, что на деле является импульсивным решением.
• Есть более чем убедительные подтверждения того, что использование только данных и работающих с ними алгоритмов обычно приводит к лучшим решениям и прогнозам, нежели использование суждений даже самых квалифицированных экспертов.
• Многие решения, оценки и прогнозы, за которые сегодня отвечают люди, следует передать компьютеру. В ряде случаев для проверки действий машины здравым смыслом следует оставить человека, в прочих же случаях его нужно полностью отстранить от принятия решений.
• Впрочем, есть ситуации, когда субъективные человеческие суждения по-прежнему могут быть полезны, если перевернуть стандартное партнерство с ног на голову. В этом случае суждения нужно перевести в числовую форму и включить в количественный анализ.
• Принятие решений не должно использоваться для того, чтобы тешить самолюбие высокопоставленных персон. Его основная задача – выдавать наилучшие варианты действий, основанные на правильных целях и четких критериях.
• Алгоритмы далеки от совершенства. Если они имеют дело с неточными или искаженными данными, они будут выдавать ошибочные или контрпродуктивные решения. Эти искажения могут быть малозаметными и непреднамеренными. Алгоритмы нужно оценивать не по отсутствию в них недостатков, а по тому, превосходят ли они существующие аналоги по ключевым критериям и можно ли их со временем улучшить.
• По мере развития технологий мы откажемся от стандартного партнерства с его чрезмерным доверием высокопоставленным лицам в пользу принятия решений, основанных исключительно на данных. Факты говорят, что компании, следующие по этому пути, обычно имеют значительные преимущества перед конкурентами старого типа.
• Лучше всего работают люди, способные смотреть на проблему с нескольких точек зрения, и компании, которые предпочитают краткосрочное планирование и эффективно экспериментируют.
Вопросы
1. Отслеживаете ли вы, и если да, то насколько систематически и строго, те решения, оценки и прогнозы, за которые в вашей организации отвечают люди и компьютеры? Знаете ли вы, кто из них лучше справляется с работой?
2. В какой области вашей организации решения обычно принимают люди с высокой зарплатой? Почему?
3. Есть ли у вас возможность в какой-нибудь части организации перевернуть стандартное партнерство, чтобы субъективные оценки людей использовались в анализе на основе данных, а не наоборот?
4. Как вы думаете, у кого в целом больше необъективности – у алгоритмов или у людей?
5. Кого вы считаете более убедительным – лис или ежей?
6. Ваша организация обычно выполняет небольшое количество долгосрочных важных проектов или большое количество краткосрочных?
Глава 3. Наши почти разумные машины
Я верю, что к концу столетия словоупотребление и общественное мнение среди образованных людей изменятся настолько, что разговоры о мыслящих машинах не вызовут протеста.
Едва разработав цифровые компьютеры, мы стали пытаться заставить их думать так, как это делаем мы. С самого начала было очевидно, что они очень полезны для выполнения шаблонных математических вычислений, но это не казалось новостью. В конце концов, люди давно знакомы с устройствами, облегчающими счет, начиная с японских и вавилонских абаков и загадочного греческого антикитерского механизма[167], появившихся еще до нашей эры. А вот новой была возможность программировать компьютеры, то есть давать им абсолютно произвольные инструкции[168]. Как мы видели в предыдущей главе, компьютерные программы идеально подходят для алгоритмов – точных пошаговых инструкций для выполнения какой-либо задачи. Однако выдающиеся мыслители, представители самых разных дисциплин, вскоре стали пытаться заставить новые машины делать нечто большее, чем просто выполнять последовательность шагов в заранее установленном порядке. Эти первопроходцы хотели, чтобы запрограммированное «железо» стало умнее их самих – иначе говоря, чтобы машина научилась рассуждать на одном уровне с человеком и стала, таким образом, искусственным интеллектом.
166
Алан Тьюринг (1912–1954) – английский математик, логик, криптограф, один из отцов информатики и искусственного интеллекта. В процитированной статье «Вычислительные машины и разум» дается общее представление о тесте Тьюринга.
167
Этот механизм размером с часы использовался для предсказания движения Солнца, Луны и планет. Он очень загадочен, поскольку крайне сложен для своего времени. Как заметила в статье 2015 года журналистка Джо Мерчант, «со времен Античности не было открыто ничего подобного. Ничего настолько изощренного или хотя бы близкого не появлялось больше тысячи лет» (Jo Marchant, “Decoding the Antikythera Mechanism, the First Computer», Smithsonian, February 2015, http://www.smithsonianmag.com/history/decoding-antikythera-mechanism-first-computer-180953979).
168
Алан Тьюринг доказал, что компьютер с программой следует рассматривать как универсальную вычислительную машину, которой в принципе можно дать инструкции по решению любой задачи, допускающей решение посредством какого-либо алгоритма.