Выбрать главу
Ассемблерная революция

Основы науки могут развиваться и изменяться, однако они будут продолжать поддерживать устойчивую, возрастающую систему технических приёмов. В конечном счете ассемблеры позволят инженерам делать всё что угодно, что может быть разработано, обходя традиционные проблемы материалов и изготовления. Приближения и компьютерные модели уже позволяют инженерам разрабатывать конструкции даже в отсутствие инструментов, позволяющих их воплотить. Всё это объединится, чтобы позволить предвидеть, а также несколько более того.

По мере того, как нанотехнология приближается, придёт время, когда ассемблеры станут неизбежной перспективой, подкреплённой серьезной и хорошо финансируемой программой разработки. Их ожидаемые способности станут ясными.

К тому времени, автоматизированное проектирование молекулярных систем, которое уже началось, станет общим и сложным, подталкиваемый успехами в компьютерной технологии и возрастающими потребностями молекулярных инженеров. Используя этих инструменты разработки, инженеры будут способны разработать второе поколение наносистем, включая второе поколение ассемблеров, которое необходимо, чтобы их построить. Что более важно, позволяя достаточный запас для неточности (и готовя альтернативные конструкции), инженеры будут способны разрабатывать многие системы, которые будут работать, как только будут построены, они разработают хорошо обоснованные конструкции в мире моделируемых молекул.

Рассмотрите преимущество этой ситуации: в разработке будет величайшее средство производства в истории, по-настоящему универсальная система изготовления, способная делать что угодно, что может быть разработано, а система проектирования будет уже в наличии. Будут ли все ожидать, пока появятся ассемблеры, чтобы начать планировать, как их использовать? Или компании и страны ответят на давление возможности и конкуренции разработкой наносистем заранее, чтобы ускорить эксплуатацию ассемблеров, когда они впервые появятся?

Этот процесс проектирования вперед, по-видимому, обязательно начнётся; единственный вопрос – когда, и как далеко он пойдёт. Годы медленного усовершенствования конструкций вполне могут прорываться в аппаратные средства с беспрецедентным неожиданностью вслед за ассемблерным прорывом. Как хорошо мы будем проектировать вперёд, и что мы будем проектировать, может определить, выживем ли мы и будем ли процветать, или мы себя уничтожим.

Поскольку ассемблерная революция затронет почти всю технологию, предсказание – это очень ёмкая задача. Из океана возможных механических устройств Леонардо предвидел только несколько. Точно так же из намного более широкого океана будущих технологий, современный разум может предвидеть только несколько. Однако, несколько достижений, похоже, обладают фундаментальной важностью.

Медицинская технология, космические горизонты, усовершенствованные компьютеры и новые социальные изобретения – все это обещает играть взаимосвязанные роли. Но ассемблерная революция затронет каждое из них и более того.

ЧАСТЬ ВТОРАЯ. ОЧЕРТАНИЯ ВОЗМОЖНОГО

Глава 4. МАШИНЫ ИЗОБИЛИЯ

Если бы каждый инструмент, когда ему приказывают, или даже по собственной инициативе, мог бы делать работу, для которой он предназначен… тогда не имелась бы никакой необходимости в учениках для мастеров или в рабах для господ.

АРИСТОТЕЛЬ

Гремящие репликаторы

Молекулярные репликаторы

Молекулы и Небоскребы

27 МАРТА 1981 ГОДА новости радио CBS процитировали учёного, работающего в NASA, который сказал, что инженеры будут способны строить самовоспроизводящихся роботов в пределах двадцати лет, для использования в космосе или на Земле. Эти машины строили бы копии себя, и копиям можно было бы делать предписания создавать полезные продукты. У него не было сомнений в их возможности, только в том, когда они будут построены. Он был прав.

С 1951, когда Джон фон Нейман выделил принципы само-копирующихся машин, ученые в целом подтверждали их возможность. В 1953 году Ватсон и Крик описали структуру ДНК, которая показала, как живые объекты передают инструкции, которые руководят их постройкой. Биологи с тех пор узнавали всё больше деталей о том, как само-

Гремящие репликаторы

Биологические репликаторы, такие как вирусы, бактерии, растения и люди, используют молекулярные машины. Искусственные репликаторы могут использовать вместо этого балк-технологию. Так как сегодня у нас есть балк-технологии, инженеры могут её использовать, чтобы строить репликаторы до того как появится молекулярная технология.

Древний миф о волшебной силе жизни (вместе с неправильным представлением, которое увеличение энтропии означает, что все во вселенной должно обязательно умереть) породил мим-высказывание, что репликаторы должны нарушить некоторый естественный закон. Это просто не так. Биохимики понимают, как клетки воспроизводятся и они не находят в них никакого волшебства. Вместо этого они находят машины, обеспечиваемые материалами, энергией и инструкциями, которые необходимы для выполнения работы. Клетки уже воспроизводятся; роботы могли бы воспроизводиться.

Успехи в автоматизации естественным образом приведут к механическим репликаторам, сделает ли кто-либо их особой целью или нет. В то время как давление конкуренции заставляет увеличиваться автоматизацию, потребность в человеческой рабочей силе на фабриках будет снижаться. На Fujitsu Fanuc уже работает машинная секция на производственном предприятии двадцать четыре часа в сутки только с девятнадцатью рабочими на этаже во время дневной смены и совсем без кого-либо во время ночной смены. Эта фабрика производит 250 машин в месяц, 100 из которых – роботы.

В конечном счете, роботы могли бы делать всю работу по сборке роботов, собирать другое оборудование, делать необходимые части, управлять шахтами и генераторами, которые снабжают различные фабрики материалами и энергией и т. д. Хотя такая сеть фабрик, развёрнутая по местности не напоминала бы беременного робота, она бы образовала саморасширяющуюся, самовоспроизводящуюся систему. Ассемблерная революция определённо произойдёт до того, как вся промышленность будет автоматизирована, однако сегодняшние шаги в этом направлении – шаги в направлении чего-то вроде гигантского гремящего репликатора.

Но как такую систему можно поддерживать и чинить без человеческого труда?

Представьте себе автоматическую фабрику, способную и проверить части и собирать оборудование. Плохие части не проходят испытаний и выбрасываются или перерабатываются. Если фабрика может также разбирать машины, производить ремонты нетрудно: нужно просто разобрать неработающие машины, проверите все их части, заменить все изношенные или сломавшиеся части и снова их собрать. Более эффективная система диагностировала бы проблемы без тестирования каждой части, но это не обязательно необходимо.

Распространяющаяся система фабрик, укомплектованных роботами, была бы осуществима, но громоздка. При умном конструировании и минимуме различных частей и материалов, инженеры могли бы уместить копирующуюся систему в один корпус, но такая – но такая коробка могла бы быть ещё огромна, потому что в ней должно содержаться оборудование, способное делать и собрать много различных частей. Сколько различных частей? Столько, сколько она сама содержит. Сколько различных частей и материалов было бы необходимо, чтобы построить машину, способную делать и собрать так много различного материалов и частей? Это трудно оценить, но системы, основанные на сегодняшней технологии использовали бы электронные чипы. Только их производство потребовало бы слишком много оборудования, которое нужно поместить внутрь маленького репликатора.