Выбрать главу

Таким образом, общая характеристика сложной системы, вообще говоря, состоит в том, что ее целое больше, чем простая линейная сумма ее составных частей, – и зачастую существенно отличается от нее. Во многих случаях кажется, что такое целое живет своей жизнью, почти ничем не связанной с конкретными характеристиками отдельных составляющих его элементов. Более того, даже если мы понимаем, как взаимодействуют между собой индивидуальные составляющие, будь то клетки, муравьи или люди, это обычно не позволяет нам предсказать системное поведение образованного ими целого. Этот коллективный результат, в котором система проявляет свойства, существенно отличные от получающихся при простом сложении отдельных вкладов всех составляющих ее элементов, называют эмерджентным поведением. Оно является хорошо заметной особенностью экономических систем, финансовых рынков, городских сообществ, компаний и организмов.

Самый важный урок, который мы извлекаем из этих исследований, заключается в том, что во многих из таких систем нет центрального управления. Например, при строительстве муравейника ни один из муравьев не имеет никакого понятия о том грандиозном предприятии, в котором он участвует. Муравьи некоторых видов даже используют в качестве строительного материала для сооружения своих замысловатых построек свои собственные тела: кочевые муравьи и огненные муравьи сцепляются в плоты и мосты, которые они используют для преодоления водных преград и других препятствий, встречающихся им в набегах за продовольствием. Здесь речь идет о так называемой самоорганизации. Это эмерджентное поведение, в рамках которого составные части объединяются, образуя эмерджентное (вновь возникающее) целое. Это же происходит при образовании социальных групп людей – например, книжных клубов или политических кампаний, – человеческих органов, которые можно считать результатом самоорганизации составляющих их клеток, или же городов, в которых можно увидеть проявление самоорганизации их жителей.

С концепциями эмерджентности и самоорганизации тесно связана еще одна важная характеристика сложных систем – их способность к адаптации и развитию в случае изменения внешних условий. Разумеется, наилучшим примером такой сложной адаптивной системы является сама жизнь во всех своих необычайных проявлениях, от клеток до городов. Разумеется, дарвиновская теория естественного отбора – это научная концепция, созданная именно для того, чтобы объяснить и описать непрерывный процесс развития организмов и экосистем и их адаптации к изменяющимся условиям.

Изучение сложных систем научило нас осторожному отношению к наивному разбиению систем на независимо действующие составные части. Более того, малое возмущение в одной из частей системы может привести к гигантским последствиям в других ее частях. Системе могут быть свойственны внезапные и, по-видимому, непредсказуемые изменения – классическим примером таких изменений можно считать биржевой крах. Одна или несколько тенденций могут усиливать другие тенденции в контуре с положительной обратной связью, в результате чего такой процесс быстро становится неуправляемым и переходит через пограничное состояние, по другую сторону которого поведение системы изменяется самым радикальным образом. Весьма зрелищным проявлением этого процесса был глобальный крах финансовых рынков 2008 г., имевший потенциально катастрофические социальные и экономические последствия для всего мира, порожденный неправильным пониманием динамики местечкового и сравнительно локализованного рынка американской недвижимости.

Лишь в течение последних тридцати лет ученые начали всерьез рассматривать задачи изучения сложных адаптивных систем как таковых и искать новые пути их исследования. На основе этих исследований естественным образом возник интегрированный, систематический междисциплинарный подход, включающий в себя широкий диапазон методик и концепций, позаимствованных из разных областей науки, от биологии, экономики и физики до информатики, инженерии и социально-экономических исследований. Из этих исследований можно сделать один важный вывод, состоящий в том, что, хотя подробное предсказание поведения таких систем обычно оказывается невозможным, в некоторых случаях можно получить приближенное численное описание среднего состояния наиболее заметных параметров такой системы. Например, хотя мы никогда не сможем точно предсказать дату смерти конкретного человека, понять, почему продолжительность человеческой жизни составляет порядка ста лет, должно быть вполне в наших силах. Применение таких численных методов к задачам, связанным с устойчивостью и долговременной жизнеспособностью нашей планеты, имеет первостепенное значение, поскольку в них уже заложено предположение о существовании тех взаимосвязей и взаимозависимостей, которые столь часто исключаются из рассмотрения существующими методиками.