Закон масштабирования уровня метаболизма, названный по имени биолога, который первым сформулировал его, законом Клайбера, применим почти для всех таксономических групп, в том числе млекопитающих, птиц, рыб, моллюсков, бактерий, растений и клеток. Однако еще большее впечатление производит тот факт, что сходные законы масштабирования действуют, по существу, для всех физиологических величин и жизненных процессов: скорости роста, частоты сердцебиения, скорости эволюции, длины генома, плотности митохондрий, количества серого вещества мозга, продолжительности жизни, высоты деревьев и даже числа листьев на них. Более того, в логарифмическом масштабе все законы масштабирования этого головокружительного набора выглядят как график, приведенный на рис. 1, а следовательно, имеют ту же математическую структуру. Все они представляют собой «степенные законы», показатель которых (наклон графика) обычно кратен ¼: классическим примером как раз и является закон масштабирования метаболизма с показателем ¾. Например, при удвоении размеров млекопитающего частота сердцебиения уменьшается приблизительно на 25 %. Таким образом, число 4 играет фундаментальную и почти что магически универсальную роль во всех проявлениях жизни[18].
Как такая удивительная регулярность возникает из статистических процессов и исторических случайностей, свойственных процессу естественного отбора? Повсеместное господство степенного закона масштабирования с показателями, кратными ¼, явно указывает на то, что естественный отбор подчинялся другим общим физическим принципам, выходящим за пределы конкретных конструкций. Самоподдерживающиеся структуры высокой сложности – будь то клетки, организмы, экосистемы, города или корпорации – требуют тесного объединения огромных количеств составных частей, на всех уровнях которого необходимо действенное обслуживание. В живых системах эта задача решается путем развития фракталоподобных сетевых систем с иерархическим ветвлением, предположительно оптимизированных механизмами непрерывной «конкурентной» обратной связи, свойственными естественному отбору. Именно общие физические, геометрические и математические свойства этих сетевых систем лежат в основе законов масштабирования, отвечая в том числе и за преобладание показателей, кратных ¼. Например, закон Клайбера вытекает из требования минимизации энергии, необходимой для циркуляции крови по системе кровообращения млекопитающих, в том числе и человека, чтобы сделать максимальной долю энергии, которую можно использовать на воспроизводство. В числе других примеров таких сетей можно назвать дыхательную, мочевыделительную и нервную системы, а также сосудистые системы деревьев и других растений. Об этих идеях мы еще поговорим несколько более подробно, так же как и о концепциях заполнения пространства (необходимости питания всех клеток тела) и фракталах (геометрии этих сетей).
В сетях млекопитающих, рыб, птиц, растений, клеток и целых экосистем, несмотря на различия их конструкций, образовавшихся в результате эволюции, действуют одни и те же основополагающие принципы и свойства. Будучи выражены в математических терминах, они не только приводят к объяснению происхождения универсальных степенных законов масштабирования с показателями, кратными ¼, но и позволяют получить численные предсказания относительно фундаментальных характеристик этих систем, в том числе, например, размеров самых мелких и самых крупных млекопитающих (землероек и китов), напора крови и частоты пульса в любом сосуде кровеносной системы любого млекопитающего, высоты самого высокого дерева во всех Соединенных Штатах, длительности сна у слонов и мышей или структуры сосудистой системы опухолей[19].
Они же приводят нас к теории роста. Рост можно рассматривать в качестве особого случая явления масштабирования. Взрослый организм – это, по сути дела, результат нелинейного увеличения ребенка; чтобы убедиться в этом, сравните пропорции своего тела с пропорциями младенца. На любом этапе развития рост осуществляется путем распределения метаболической энергии, передаваемой по сетям клеткам уже существующим, для образования новых клеток, из которых составляются новые ткани. Этот процесс можно проанализировать при помощи теории сетей и вывести универсальную численную теорию кривых роста, применимую к любым организмам, в том числе и опухолям. Кривая роста – это попросту график зависимости размеров организма от его возраста. Если у вас есть дети, вы наверняка знакомы с такими кривыми, так как педиатры все время показывают их родителям, чтобы те могли увидеть, как развитие их детей соотносится с уровнями, ожидаемыми для среднестатистического ребенка соответствующего возраста. Теория роста также объясняет один любопытный парадокс, над которым вы, возможно, уже задумывались, а именно тот факт, что мы в какой-то момент перестаем расти, хотя и не перестаем есть. Оказывается, это явление вытекает из сублинейного масштабирования метаболизма и экономии на масштабе, свойственных такой сетевой конструкции. В одной из следующих глав та же парадигма будет применена к росту городов, компаний и экономических систем для разъяснения фундаментального вопроса о происхождении неограниченного роста и возможности его устойчивости.
18
Сводки различных аллометрических законов масштабирования в биологии приведены в нескольких превосходных работах. Среди них можно назвать:
19
Эти идеи первоначально были высказаны в работе: