Выбрать главу

Поскольку сущность любой измеримой величины не может зависеть от произвольного выбора единиц измерения, сделанного человеком, не могут от него зависеть и законы физики. Следовательно, все они – и вообще все научные законы – должны быть выражаемы в виде соотношений между масштабно-инвариантными безразмерными величинами, даже если обычно мы записываем их в другой форме для собственного удобства. В этом состоял основной посыл эпохальной статьи Рэлея.

В его работе приводятся изящные иллюстрации применения этой методики на многочисленных, тщательно подобранных примерах, в том числе и научное объяснение одной из величайших загадок жизни, о которой в тот или иной момент задумывался каждый из нас: почему небо синее? Используя изящное рассуждение, основывающееся исключительно на безразмерных величинах, Рэлей показывает, что интенсивность рассеяния световых волн на мелких частицах должна спадать пропорционально четвертой степени длины волны. Поэтому, когда солнечный свет, представляющий собой сочетание всех цветов радуги, рассеивается на микроскопических частицах, взвешенных в атмосфере, наиболее интенсивным оказывается свет с самой короткой длиной волны, то есть синий.

Собственно говоря, Рэлей вывел этот потрясающий результат гораздо раньше, в блестящей работе, основанной на мастерском математическом анализе этой задачи, давшем подробное механистическое объяснение происхождения сдвига к синему краю спектра. Он привел простой вывод этого решения в статье, посвященной подобию, чтобы продемонстрировать, что тот же самый результат можно было получить, по его словам, «всего за несколько минут размышлений» и без применения подробных и замысловатых математических построений, если использовать логику масштабирования, которую он называет «великим принципом подобия». Его рассуждение о масштабировании показывает, что сдвиг в сторону коротких волн является неизбежным результатом любого анализа, проведенного с правильным выбором существенных переменных. Чего в этом выводе недостает, так это более глубокого понимания того механизма, который обеспечивает получение результата. Это характерно для многих рассуждений, касающихся масштабирования: в них можно получить общие результаты, но подробности причин их возникновения иногда остаются неясными.

Проведенный Рэлеем математический анализ рассеяния волн заложил основы так называемой теории рассеяния. Ее приложения ко многим задачам, от волн в воде до волн электромагнитных, в особенности радиолокационных, а в более недавнее время – в области компьютерной связи, имели чрезвычайно большое значение, но не менее важной была и роль, которую она сыграла в развитии квантовой механики. Именно на основе этой теории был построен аппарат, позволяющий извлекать информацию из «экспериментов по рассеянию», которые проводятся на крупных ускорителях элементарных частиц, например в Европейском центре ядерных исследований (CERN) в Женеве, в котором недавно был открыт знаменитый бозон Хиггса.

Если посмотреть на исходную статью, которую он опубликовал в 1870 г., в возрасте всего двадцати восьми лет, можно увидеть, что имя ее автора – вовсе не лорд Рэлей. Тогда он носил гораздо более прозаическое имя Джона Стретта, больше подходящее персонажу из романа Томаса Харди, чем заслуженному профессору физики из Кембриджа. Так звали Рэлея до того, как в 1873 г. он унаследовал свой титул от отца; после этого он и стал называться лорд Рэлей. Фамилия Стретт более всего известна общественности по его младшему брату Эдварду, основавшему знаменитую фирму по торговле недвижимостью под названием Strutt & Parker: сейчас эта компания является одним из крупнейших коллективных собственников недвижимости в Великобритании. В следующий раз, когда будете в Лондоне, обратите внимание на ее фирменные знаки на дорогих зданиях в центре города.

Рэлей был замечательным ученым-универсалом. В число множества его великих достижений входят разработка теории звука и открытие аргона, за которое он получил в 1904 г. одну из первых в истории Нобелевских премий (точнее говоря, четвертую).

Глава 3. Простота, единство и сложность жизни

Как подчеркивалось в первой главе, все живые системы, от мельчайших бактерий до крупнейших городов и экосистем, являются, по сути, адаптивными сложными системами, действующими в широчайшем диапазоне множественных пространственных, временных, энергетических и массовых масштабов. Лишь в том, что касается массы, общий масштаб форм жизни охватывает более тридцати порядков величины (1030), считая от молекул, обеспечивающих работу обмена веществ и генетического кода, до целых экосистем и городов. Этот диапазон значительно превышает соотношение массы Земли и массы всей нашей галактики, Млечного Пути, составляющее «всего» восемнадцать порядков, и сравним с соотношением массы электрона с массой мыши.