В нашем последнем софизме, заимствованном из элементарной теории чисел, речь пойдет о сравнительных достоинствах «интересных» чисел. Разумеется, числа могут представлять интерес с различных точек зрения. Так, для Джорджа Мура, когда он писал свою знаменитую оду тридцатилетней женщине, особый интерес представляло число 30 — Мур считал, что в этом возрасте замужние женщины особенно привлекательны. Для специалиста по теории чисел число 30 представляет, по-видимому, еще больший интерес, поскольку это наибольшее из чисел, обладающих тем свойством, что все меньшие числа, не имеющие с ними общих делителей, просты. Число 15 873 также небезынтересно: если его умножить сначала на любую цифру, то есть на любое из чисел от 1 до 9, а затем на 7, то результат будет состоять из повторений выбранной для первого умножения цифры. Еще более удивительными свойствами обладает число 142 857: умножая его на числа от 1 до 6, вы будете получать циклические перестановки одних и тех же шести цифр.
Возникает вопрос: существуют ли неинтересные числа? С помощью элементарных рассуждений нетрудно доказать, что неинтересных чисел нет. Если бы скучные числа существовали, то все числа можно было бы разбить на два класса: интересные числа и неинтересные, скучные числа. Во множестве неинтересных чисел нашлось бы одно число, которое было бы наименьшим из всех неинтересных чисел. Но наименьшее из всех неинтересных чисел — это уже число само по себе интересное. Поэтому мы должны были бы изъять его из множества неинтересных чисел и перевести в другое множество.
В оставшемся множестве в свою очередь нашлось бы наименьшее число. Повторяя этот процесс достаточно долго, можно сделать интересным любое неинтересное число.
* * *
Наибольшее беспокойство читателям доставил софизм с вывернутым наизнанку тором. Тор действительно можно вывернуть наизнанку, но это изменяет его ориентацию. В результате обе окружности меняются местами и остаются в зацеплении. Если отрезать нижнюю часть чулка и сшить концы в трубку, получится превосходная модель тора. На ней нитками различных цветов можно простегать меридиан и параллель. Такой тор легко вывернуть через дырочку в поверхности, при этом прекрасно видно все, что происходит с меридианом и параллелью.
Подробное объяснение софизма с треугольником и некоторые другие головоломки можно найти в двух главах «Исчезновение фигур» моей книги «Математические чудеса и тайны».[25] Софизм с галстуком подробно разобран у М. Крайчика.[26]
Заключительное «доказательство» того, что неинтересных чисел не существует, вызвало следующую телеграмму читателя:
Немедленно прекратите вылавливать неинтересные числа и превращать их в интересные. Для интереса оставьте хоть одно неинтересное число!
Глава 14. НИМ И ТАК-ТИКС
Ним — одна из самых старых и занимательных математических игр. Играют в нее вдвоем. Дети используют для игры камешки или клочки бумаги, взрослые предпочитают раскладывать монетки на стойке бара. В наиболее известном варианте нима 12 монет раскладывают в три ряда так, как показано на рис. 84.
Рис. 84 Монеты, разложенные для игры в ним по схеме «3, 4, 5».
Правила нима просты. Игроки по очереди забирают по одной или нескольку монет из любого ряда. Выигрывает тот, кто возьмет последнюю монету. Можно играть и наоборот: считать того, кто возьмет последнюю монету, проигравшим. Хороший игрок вскоре обнаружит, что и в том и в другом варианте можно добиться победы, если после его хода останется два одинаковых ряда монеток (то есть с одним и тем же числом монет в каждом ряду), причем в каждом ряду будет находиться более одной монетки. Выиграть можно и в том случае, если в первом ряду останется одна, во втором — две и в третьем — три монетки. Тот, кто открывает игру, наверняка побеждает, если первым ходом он забирает две монетки из верхнего ряда, а затем рационально продолжает игру.
Казалось, что анализ столь простой игры не может привести к каким-либо неожиданностям, однако в начале века было сделано удивительное открытие. Обнаружилось, что ним допускает обобщение на любое число рядов с любым числом фишек в каждом ряду и что с помощью до смешного простой стратегии, используя двоичную систему счисления, любой желающий может стать непобедимым игроком. Полный анализ и доказательство существования оптимальной стратегии впервые опубликовал в 1901 году Чарлз Л. Бутон, профессор математики Гарвардского университета. Бутон и назвал игру «ним» от устаревшей формы английских глаголов «стянуть», «украсть».
Каждую комбинацию фишек в обобщенной игре Бутон назвал либо «опасной», либо «безопасной». Если позиция, создавшаяся после очередного хода игрока, гарантирует ему выигрыш, она называется безопасной; в противном случае позиция называется опасной.
Так, при игре в ним по описанной выше схеме «3, 4, 5» (рис. 84) первый игрок окажется в безопасной позиции, взяв две монетки из верхнего ряда. Любую опасную позицию, сделав соответствующий ход, всегда можно превратить в безопасную. Каждая безопасная позиция становится опасной после любого хода. Следовательно, рациональная игра заключается в том, чтобы каждый раз превращать опасную позицию в безопасную.
Чтобы определить, опасна или безопасна данная позиция, число фишек в каждом ряду нужно записать в двоичной системе. Если сумма чисел в каждом столбце (разряде) равна нулю или четна, то позиция безопасна. Если же сумма нечетна хотя бы в одном разряде, то позиция опасна.
В двоичной системе нет ничего сверхъестественного. Это всего лишь способ записи чисел в виде суммы степеней двойки. В помещенной здесь таблице приведена двоичная запись чисел от 1 до 20.
Двоичные числа для игры в ним
Обратите внимание на то, что, двигаясь справа налево, вы каждый раз попадаете в столбец, отвечающий большей степени двойки, чем предыдущий (то есть переходите ко все более старшим двоичным разрядам). Так, двоичная запись 10 101 говорит нам, что к 16 нужно прибавить 4 и 1, а это дает десятичное число 21. Записывая в двоичной системе число фишек в каждом ряду, расставленных по схеме «3, 4, 5», мы получим
Сумма цифр в среднем столбце равна 1 — нечетному числу, что свидетельствует об опасности данной позиции. Поэтому первый игрок может сделать ее безопасной. Как уже объяснялось, именно это он и делает, когда забирает из верхнего ряда две монетки. В результате в верхнем ряду остается лишь 1 монетка (двоичное число также 1) и нечетное число в последовательности сумм чисел по столбцам пропадает. Перепробовав остальные ходы, читатель убедится в том, что только указанный ход может сделать исходную позицию безопасной.
Если в каждом ряду стоит не более 31 фишки, то любую позицию легко проанализировать, использовав в качестве вычислительной машины (работающей в двоичной системе!) пальцы левой руки. Предположим, что в начальной позиции в первом ряду стоит 7, во втором 13, в третьем —24 и в четвертом —30 фишек. Вы должны сделать первый ход. Опасна или безопасна исходная позиция? Поверните левую руку с растопыренными пальцами ладонью к себе. Большой палец будет означать коэффициент при 16, указательный—коэффициент при 8, средний — при 4, безымянный — при 2 и мизинец — коэффициент при 1. Для того чтобы ввести в вашу вычислительную машину число 7, прежде всего нужно загнуть палец, соответствующий наибольшей степени двойки, входящей в 7.
Такой степенью является 4, поэтому вы загибаете средний палец.