Выбрать главу

Изящный набор пентакубиков прислал Д. Кларнер. Вытряхнув их из коробки, в которую они были упакованы, я так и не смог (до сих пор) уложить их обратно. Кларнер потратил много времени на конструирование необычных фигур из пентакубиков, немало времени пришлось потратить и мне, чтобы воспроизвести некоторые из них. Он также сообщил мне, что существует 166 гексакубиков (фигур, получаемых при склеивании шести кубиков), но был так любезен, что их набора мне не прислал.

Ответ

Единственная фигура на рис. 118, которую нельзя построить из семи элементов кубиков сома, — небоскреб.

Глава 22. ЗАНИМАТЕЛЬНАЯ ТОПОЛОГИЯ

Топологами принято называть математиков, которые не могут отличить кофейную чашку от бублика. Поскольку предмет, имеющий форму кофейной чашки, непрерывной деформацией можно перевести в другой предмет, имеющий форму бублика, оба предмета топологически эквивалентны, а топологию, если не гнаться за точностью, можно определить как науку, изучающую свойства фигур, инвариантные относительно непрерывных деформаций. Множество математических забав и развлечений (в том числе различного рода волшебные фокусы, головоломки и игры) тесно связано с топологией. Топологам они могут показаться тривиальными, но для остальной части человечества эти забавы остаются вполне занятными.

Несколько лет назад С. Джуда придумал необычный фокус.

Шнурок от ботинок тщательно наматывают на карандаш и соломинку для коктейля. Если потянуть за концы шнурка, то кажется, что шнурок проходит сквозь карандаш и перерезает соломинку пополам. С разрешения Джуды мы раскрываем здесь секрет этого фокуса.

Прежде всего расплющим соломинку и прикрепим с помощью резинки один ее конец к концу незаточенного карандаша (рис. 120, а).

Рис. 120 Фокус со шнурком, проходящим сквозь карандаш.

Перегнем соломинку пополам и попросим кого-нибудь подержать карандаш обеими руками так, чтобы он был отклонен от вас под углом 45°. Натянув шнурок, приложим его к карандашу — середина шнурка должна оказаться примерно на середине карандаша (б) — и перехлестнем концы шнурка накрест с другой стороны карандаша (в). Следует особенно тщательно следить за тем, чтобы в дальнейшем при каждом перехлесте сверху оказывался один и тот же конец шнурка, например конец а, иначе фокус не получится.

Потянув концы на себя, перехлестнем их еще с передней стороны карандаша (г), отогнем свободный конец соломинки вверх (д) и также прикрепим его к концу карандаша резинкой. Еще раз перехлестнем концы шнурка накрест (напомним, что конец а всегда должен быть сверху, а конец Ь — снизу), чтобы «привязать» соломинку к карандашу (е). Отведя концы шнурка назад, перехлестнем их еще раз под карандашом (сне), а затем, потянув их на себя, перехлестнем в последний раз над соломинкой (з). На рис. 120 все петли, которыми шнурок обвил карандаш, несколько раздвинуты для наглядности. Показывая фокус, старайтесь сгруппировать все петли как можно ближе к середине карандаша.

Попросите своего добровольного ассистента держать карандаш покрепче и натяните концы шнурка. Сосчитав вслух до трех, резко их еще раз под карандашом (сне), а затем, потянув их на себя, перехлестнем в последний раз над соломинкой (з). На рис. 120 все петли, которыми шнурок обвил карандаш, несколько раздвинуты для наглядности. Показывая фокус, старайтесь сгруппировать все петли как можно ближе к середине карандаша.

Попросите своего добровольного ассистента держать карандаш покрепче и натяните концы шнурка. Сосчитав вслух до трех, резко дерните концы шнурка в стороны. Неожиданный результат показан на рис. 120, и: шнурок, который только что был обмотан вокруг карандаша и соломинки, таинственным образом проходит сквозь карандаш, перерезает соломинку («Слишком слаба, не выдерживает всепроникающей силы шнурка», — поясните вы) и оказывается в ваших руках!

Если вы внимательно проследите за манипуляциями фокусника, то постигнете суть происшедшего чуда. Шнурок навит на карандаш по двум противоположно закрученным винтовым линиям. Поэтому замкнутая кривая, которую образуют шнурок и фокусник, не сцеплена с замкнутой кривой, образуемой карандашом и держащим его зрителем. Шнурок перерезает соломинку, которая не дает раскрутиться спиралям, после чего спирали уничтожают друг друга (происходит нечто вроде аннигиляции частицы и античастицы).

Многие традиционные головоломки также имеют топологическую природу. Более того, топология берет начало в классической работе Леонарда Эйлера (1736), в которой великий математик подробно проанализировал головоломку о семи кенигсбергских мостах (их все нужно обойти, не побывав ни на одном дважды). Эйлер показал, что задача о мостах сводится к другой эквивалентной ей задаче о вычерчивании единым росчерком пера некоторой замкнутой кривой (предполагается, что след, оставляемый пером на бумаге, представляет собой непрерывную линию и ни один из участков замкнутой кривой не проходится дважды). Задачи такого рода часто встречаются в литературе по занимательной математике. Приступая к их решению, прежде всего необходимо отметить, в скольких узлах (узлами называются концы дуг, образующих кривую) сходится четное число линий и в скольких — нечетное. (Число «нечетных» узлов всегда четно; см. задачу 8 в главе 20.) Если все узлы «четны», то кривую можно начертить единым росчерком пера, начав и закончив обводить ее с любой точки. Если два узла нечетны, то кривую все же можно вычертить, но для этого нужно начать обводить ее с одного нечетного узла и закончить на другом нечетном узле. Если такая задача (с двумя нечетными узлами) имеет хоть какое-нибудь решение, то соответствующую кривую можно обойти по маршруту без самопересечений. Задача вообще не имеет решения, когда число нечетных узлов больше двух: нечетные узлы, очевидно, должны быть начальными и конечными точками пути, проходящего по всем звеньям кривой, а у любой непрерывной линии либо имеются две конечные точки, либо нет ни одной.

Помня эти эйлеровы правила, вы сумеете без труда решать головоломки, связанные с вычерчиванием кривых и обходом хитроумных маршрутов. Однако такие задачи, если осложнить их одним или двумя дополнительными условиями, нередко превращаются в труднейшие проблемы. Рассмотрим, например, сеть, изображенную на рис. 121.

Рис. 121 Как обойти все линии, совершив минимальное число поворотов?

Все ее узлы четны. Как мы уже знаем, такую сеть можно начертить, не отрывая пера от бумаги и не проходя ни по одному ее участку дважды. Усложним теперь задачу: разрешим проходить любой участок сети неограниченное число раз, а начинать и заканчивать обход сети в любых двух ее точках. Спрашивается, чему равно наименьшее число поворотов, которое необходимо совершить, чтобы побывать на всех без исключения участках сети?

Маршрут предполагается непрерывным, без прыжков; остановка и возвращение назад по одной и той же прямой считается поворотом.

В основе механических головоломок с веревочками и колечками нередко лежит топологическая теория узлов. Одна из лучших головоломок этого типа изображена на рис. 122.

Рис. 122 Можно ли, не развязывая веревки, передвинуть кольцо в петлю В?

Ее нетрудно сделать самому из куска плотного картона, веревочки и колечка таких размеров, чтобы оно не проходило через центральное отверстие. Чем больше кусок картона и чем тяжелее веревочка, тем легче производить соответствующие манипуляции. Задача заключается в том, чтобы переместить кольцо из петли А в петлю В, не разрезая веревочки и не отвязывая ее концов.