Для того чтобы найти положение точки С с помощью циркуля и линейки, можно воспользоваться любым из нескольких простых методов, восходящих к Евклиду. Один из них заключается в следующем.
Проведем прямую BE так, как показано на рис. 135.
Рис. 135 К решению задачи с лотарингским крестом.
Эта прямая делит отрезок AD пополам, так что DF = BD/2. С помощью циркуля проведем дугу окружности с центром в точке F и радиусом DF. Эта дуга пересекает отрезок BF в точке G. С центром в точке В проведем дугу окружности радиусом BG, пересекающую BD в точке С. Это и дает искомое золотое сечение отрезка BD.
Некоторые читатели нашли более простые способы решения задачи. Вот одно из самых простых построений прямой, делящей лотарингский крест на две равновеликие части: полуокружность, один конец которой проходит через точку А (рис. 134), а другой — через точку, расположенную на три единицы ниже на одной вертикали с А, пересекает правую границу креста в точке N.
Глава 24. МАРТЫШКА И КОКОСОВЫЕ ОРЕХИ
9 октября 1926 года в газете «Сатердей ивнинг пост» был напечатан небольшой рассказ Б. Э. Уильямса под названием «Кокосовые орехи». Сюжет этого рассказа сводился к тому, что некий строительный подрядчик хотел во что бы то ни стало помешать своему конкуренту получить важный заказ. Находчивый клерк подрядчика, зная страсть конкурента к занимательной математике, подсунул тому задачу настолько захватывающего содержания, что бедный конкурент, всецело поглощенный ее решением, забыл подать заявку в установленный срок и упустил контракт.
Вот эта задача в том виде, как ее сформулировал клерк из рассказа Уильямса.
Пять матросов и мартышка потерпели кораблекрушение и высадились на необитаемом острове. Весь первый день они занимались сбором кокосовых орехов. Вечером они сложили все орехи в кучу и легли спать.
Ночью, когда все заснули, один из матросов, подумав, что утром при разделе орехов может вспыхнуть ссора, встал, чтобы взять свою долю орехов немедля. Он разделил все кокосовые орехи на пять равных кучек, а один оставшийся орех отдал мартышке. Затем матрос спрятал свою долю, а все остальные орехи снова сложил в одну кучу.
Через некоторое время проснулся другой «робинзон» и сделал то же самое. У него тоже остался один лишний орех, и он отдал его мартышке. И так один за другим поступили все пятеро потерпевших кораблекрушение. Каждый из них взял себе одну пятую орехов из той кучи, которую он нашел при пробуждении, и каждый отдал один орех мартышке. Утром они поделили оставшиеся орехи, и каждому досталось поровну — по одной пятой. Разумеется, каждый из матросов не мог не знать, что части орехов не хватает, но так как у каждого из них совесть была одинаково нечиста, то никто ничего не сказал. Сколько кокосовых орехов было первоначально?
В рассказе Уильямса ответа не давалось. Говорят, что уже в течение первой недели после опубликования рассказа редакция «Сатердей ивнинг пост» получила около 2000 писем. Джордж X. Лоример, занимавший в то время пост главного редактора газеты, направил Уильямсу следующую историческую телеграмму: Ради бога, сообщите, сколько было орехов. В редакции творится черт знает что.
В течение 20 лет Уильяме продолжал получать письма либо с просьбой сообщить ответ, либо с новыми решениями. В настоящее время задача о кокосовых орехах принадлежит к числу наиболее часто решаемых, но наименее поддающихся решению диофантовых головоломок (термин «диофантово уравнение» происходит от имени Диофанта Александрийского, греческого математика, который впервые подробно исследовал уравнения, допускающие решения в рациональных числах).
Задачу о кокосовых орехах придумал не Уильяме. Он лишь видоизменил уже известную до него задачу, чтобы сильнее запутать ее. Более старая версия задачи почти полностью совпадает с приведенной в рассказе Уильямса. Единственное различие заключается в том, что утром при окончательном разделе орехов в старом варианте задачи один орех снова оказывается лишним и достается мартышке, в то время как в рассказе окончательный раздел производится точно, без остатка. Некоторые диофантовы уравнения имеют лишь одно решение (например, уравнение х2 +2 = у3); другие допускают конечное число решений, третьи (например, уравнение х3 + у3 = z3) не имеют ни одного решения. Задача о кокосовых орехах и в изложении Уильямса, и в формулировке его предшественников допускает бесконечно много решений в целых числах.
Наша задача состоит в том, чтобы найти среди них наименьшее положительное число.
Более старый вариант задачи можно свести к следующим шести неопределенным уравнениям:
N = 5A + 1, 4C = 5D + 1,
4А = 5В + 1, 4D = 5E + 1
4B = 5C + 1, 4E = 5F + 1
Смысл каждого из этих уравнений очевиден: имеющееся количество орехов делят на пять равных частей (причем эту операцию проделывают шесть раз). Буква N означает первоначальное число орехов, буква F — число орехов, которое получил каждый моряк при окончательном разделе, единицы в правых частях уравнений — те орехи, которые достались мартышке, а каждая из букв — некоторое (пока неизвестное) целое положительное число.
С помощью хорошо известных из алгебры приемов эти уравнения нетрудно свести к одному диофантову уравнению с двумя неизвестными:
1024N = 15 625F+11529.
Это уравнение слишком сложно, чтобы решать его методом проб и ошибок. Существует стандартный метод его решения, основанный на остроумном использовании непрерывных дробей, однако он приводит к длинным и громоздким выкладкам. Мы же рассмотрим здесь на первый взгляд бессмысленное и невероятное, но изящное и простое решение, в котором используется понятие об отрицательном числе кокосовых орехов. Это решение иногда приписывают физику из Кембриджа Полю А. М. Дираку, однако в ответ на мой вопрос профессор Дирак написал, что ему решение сообщил Дж. Г. К. Уайтхэд, профессор математики из Оксфорда (и племянник знаменитого философа). Профессор Уайтхэд в ответ на аналогичный вопрос заявил, что он узнал решение от кого-то еще, и я не стал заниматься дальнейшим расследованием.
Независимо от того, кому первому пришла в голову мысль об отрицательных кокосовых орехах, рассуждать он мог примерно так.
Поскольку орехи шесть раз делили на пять кучек, ясно, что, прибавив число 56 (то есть 15 625) к любому ответу, мы получим другой, больший ответ. Более того, к решению задачи можно прибавлять кратное числа 56 (при этом мы получим новое решение), и точно так же из решения молено вычитать любое кратное числа 56. Вычитая кратные 56, мы в конце концов получим бесконечно много решений задачи в отрицательных числах. Все они будут удовлетворять исходному уравнению, но не будут удовлетворять первоначальной задаче, поскольку ее решение должно быть целым положительным числом.
Очевидно, что небольшого положительного значения N, которое бы удовлетворяло условиям задачи, не существует. Может быть, простое решение удастся найти в отрицательных числах? Простым подбором можно без особого труда обнаружить удивительный факт: такое решение действительно существует. Это N = —4.
Убедимся в том, что это число в самом деле удовлетворяет всем условиям задачи.
Первый моряк подходит к куче, в которой имеется -4 кокосовых ореха, бросает один (положительный) кокосовый орех мартышке (получает мартышка свой орех до или после того, как вся куча будет разделена на пять частей, роли не играет). Таким образом, в куче оказывается —5 орехов. Это количество он раскладывает на пять кучек, по —1 ореху в каждой. Затем он прячет —1 орех, после чего остается —4 кокосовых ореха—ровно столько, сколько было вначале! Следующий моряк проделывает тот лее ритуал с несуществующими орехами, и после окончательного раздела «имущества» у каждого моряка оказывается по —2 ореха. В самом лучшем положении при таком «пополнении запасов наоборот» оказывается мартышка: она умчится, получив свои +6 орехов! Чтобы найти ответ, то есть наименьшее целое положительное число, удовлетворяющее данным задачи, нам остается только прибавить 15 625 к —4 и получить искомое решение: 15 621.