На рис. 154 изображен исходный ряд, выложенный по простому, не упоминавшемуся в этой главе правилу. Читатель может доставить себе удовольствие и, прежде чем заглянуть в ответ, поломать голову над разгадкой правила. Следует заметить, что цвета первых семи карт чередуются, а затем это чередование нарушается.
Так часто случается и в игре, и в истории науки: игроки нередко следуют правилу, не совпадающему с истинным, но упорно цепляются за свою догадку до тех пор, пока эксперимент не покажет, что подлинное правило проще, чем они ожидали, или что достигнутый успех был случайным.
* * *
Хотя индуктивные черты присущи самым различным играм, лишь в немногих из них эти черты носят достаточно глубокий характер, чтобы игру можно было назвать индуктивной. Я могу назвать лишь игру в «морской бой» (иногда называемую сальво), детскую игру в «виселицу», «балду» и тому подобные игры, связанные с отгадыванием слов, и комнатную игру, известную под названием «В дорогу». В последней игре водящий записывает на листке бумаги правило, которым определяется, какие вещи можно брать с собой в дорогу. После этого он говорит: «Я возьму с собой…» — и называет вещь, которую (согласно правилу) можно взять в дорогу.
Остальные участники по очереди спрашивают, нельзя ли им взять с собой тот или иной предмет, а водящий сообщает, разрешает ли правило брать этот предмет или нет. Победителем считается тот, кто сумеет первым отгадать правило. Правила могут быть и простыми и сложными. Вот пример довольно хитроумного правила: название предмета и фамилия того, кто берет его в дорогу, должны начинаться с одинаковой буквы.
[Интересная игра была выпущена в продажу во Франции. Ее очень легко сделать самому. Игра похожа на детский строительный набор и состоит из сделанных из дерева фигур (точнее, призм с малой высотой), треугольников, квадратов, прямоугольников и кружков. Каждая фигура бывает трех цветов — красного, желтого и зеленого. Кроме того, фигуры бывают большими и маленькими (вдвое меньшими), а также толстыми (высота ~ 1 см) и тонкими (~ 1/2 см). Всего в наборе, таким образом, имеется 4x3x2x2 = 48 фигур. В них играют, как в элузис, но можно (особенно для детей) придумать более простые игры. Простейшая из них: спрятать одну фигуру и попросить отгадать, глядя на оставшиеся фигуры, какая из них спрятана. Отгадывать нужно в минимальный срок. Можно играть, как в домино, приставляя фигуры, сходные по одному из признаков (например, к красному большому толстому треугольнику можно приставить красный маленький тонкий квадрат). Можно требовать совпадения двух признаков или даже трех (в этом случае проще говорить об отличии по одному из признаков).
Другая игра: водящий задумывает один или два признака. Отгадывающий, указывая на один из кубиков, спрашивает: «Такой?»
Водящий отвечает «да» или «нет». Надо отгадать задуманные признаки за минимальное число ходов.
Интересное задание для детей состоит в том, что рисуют три пересекающиеся области (можно положить три обруча хула-хупа).
Они образуют три попарно общие области, одну, общую всем трем, и три непересекающиеся. Требуется положить в одну из областей, например, зеленые фигуры, в другую тонкие, а в третью круги.
Как разложить все фигуры наиболее быстро (не перекладывая)?
Ответ: начать с общей области.
Можно придумать очень много разных задач и игр. Наконец, как в элузисе, ведущий может задумывать правила игры, а играющие должны их отгадывать.]
Я думаю, что существует еще много неисследованных возможностей для создания необычных индуктивных игр, например отгадывание узоров. Представьте себе квадратную коробку, которая может вместить 100 квадратных шашек. Пусть имеется 600 таких шашек, выкрашенных с одной стороны в различные цвета. Оборотная сторона всех шашек выкрашена в черный цвет. Не считая черного цвета, всего имеется шесть различных цветов, по 100 шашек каждого цвета. Ведущий втайне от остальных участников игры укладывает 100 шашек в коробку, образуя из них симметричный узор (узоры могут быть самыми разнообразными, от однотонного квадрата из 100 шашек одного и того же цвета до весьма запутанных и сложных). Коробку с шашками переворачивают, кладут вверх дном на стол и осторожно снимают. На столе остается квадрат из 100 шашек, обращенных черной «изнанкой» вверх. Игроки по очереди вынимают одну шашку, узнают, какого она цвета, и кладут ее на место (по-прежнему черной стороной вверх). Первый, кто сумеет правильно нарисовать весь узор, считается победителем. Свои узоры игроки рисуют так, чтобы другие не видели, и показывают наброски только водящему.
Играя в элузис, трудно удержаться от искушения назвать сдающего карты «всевышним», и игроки часто прибегают к теологической фразеологии. Так, когда подходит чей-то черед сдавать карты, говорят, что настала его «очередь быть богом». Если сдающий карты ошибается и вопреки собственному правилу ошибочно называет карту правильной, то об этом происшествии говорят как о «чуде».
Роберт Эбботт рассказывает, что однажды сдававший карты, видя, что никто не может отгадать задуманное им правило, указал на карту, лежащую перед одним из игроков, и заявил: «Пойдите этой картой». Игрок воспринял эту подсказку как «божественное откровение».
Ответы
Правило, определяющее последовательность карт в исходном ряду, изображенном на рис. 154, формулируется так: «Если верхняя карта ряда четная, то ходят трефы или бубны; если верхняя карта нечетная, то ходят червы или пики».
Возможны и другие правила. Например такое: «Пойдите любой картой, которая по достоинству отличается от верхней карты исходного ряда». Это правило проще, но, даже допустив, что оно верно, мы вряд ли сможем объяснить, как могло возникнуть более тесное упорядочение карт, подчиняющееся первому правилу. Ведь вполне может случиться так, что все игроки ошибочно приняли за истинное первое правило и действовали соответственно ему, причем никто ни разу не пошел картой, равной по достоинству верхней карте исходного ряда. Разумеется, в настоящей игре ошибочные карты позволяют строить дополнительные предположения и отбирать среди конкурирующих гипотез нужную.
Некоторым нравится придумывать очень сложные правила.
Один из возможных вариантов выглядит так. Во внимание принимаются только численные значения карт, причем значение туза считается равным 14. Циклические повторения в расположении карт не допускаются. Ходить можно картой, значение которой либо больше, либо меньше значения верхней карты исходного ряда.
Если очередной игрок продолжает либо увеличивать, либо уменьшать значение карт, то он должен увеличить шаг между значениями карт. Если дальнейшее увеличение шага невозможно, то шаг считается равным 1.
То обстоятельство, что одни и те же факты можно объяснить с помощью различных гипотез и что любую гипотезу можно «перелицевать» так, чтобы она соответствовала и новым, ранее противоречившим ей фактам, позволяет нам глубже понять важную особенность научного метода. Например, если мы пойдем восьмеркой бубен на восьмерку треф, то последнее правило можно спасти, добавив, что восьмерка бубен — единственная карта, которой можно пойти в любой момент. Многие научные гипотезы (например, птолемееву модель Вселенной) пытались спасти, загромождая их все большими и большими подробностями, чтобы хоть как-нибудь объяснить новые факты, прежде чем окончательно отказаться от них в пользу более простого объяснения.
Из всего сказанного возникают два глубоких вопроса философии науки: почему простейшая гипотеза является наилучшей? Чем определяется "простота"?