Только один положительный корень х = 4,18112… не является посторонним. Умножив его на 15, получаем ответ: 62,7168… м.
Исходную формулу полученного выше уравнения можно привести к виду
очень похожему на уравнение, возникающее в первичном варианте задачи. Чтобы выполнить преобразование, нужно лишь извлечь квадратные корни из правой и левой частей исходного уравнения.
Возможны многочисленные варианты этой задачи: для строя, марширующего в направлении, параллельном диагонали квадрата; для строев, имеющих форму правильных многоугольников с чи-
числом сторон, превышающим 4; для построений по кругу; вращающихся строев и т. п.
Задача о терьере — это лишь иная формулировка задачи об истребителе-перехватчике, совершающем разведывательный полет по сторонам квадрата, в центре которого находится движущееся судно. Она легко решается с помощью векторных диаграмм на «планшете», на который в военно-морском флоте принято наносить обстановку.
5. Простейший способ укладки пояса Барра, при котором концы пояса оказываются прямыми, а сам он принимает вид прямоугольника, имеющего всюду одинаковую толщину, показан на рис. 192.
Рис. 192 Как Барр сложил свой пояс.
Это позволяет скатать пояс в аккуратный валик без каких-либо уродливых выступов (что хоть в какой-то мере вознаграждает нас за длительную возню с его укладкой). Предложенный способ пригоден при любой длине пояса и всегда приводит к желаемому результату независимо от того, под каким углом обрезаны углы пояса.
6. Предположение о том, что «девушка» — это Джин Браун, секретарь факультета, быстро приводит к противоречию. На первую реплику секретаря отвечает особа с черными волосами, поэтому волосы Браун не могут быть черными. Но они не могут быть и каштановыми, ибо тогда их цвет соответствовал бы фамилии. Поэтому волосы Браун могут быть только белыми. Такое заключение означает, что профессор Блэк имеет каштановые волосы, а профессор Уайт — черные. Но замечание особы с черными волосами вызывает восклицание у профессора Уайта, в силу чего они не могут быть одним и тем же лицом.
Таким образом, нам не остается ничего другого, как предположить, что Джин Браун мужчина. Волосы профессора Уайта (или Уайт) не могут быть белыми (ибо тогда их цвет соответствовал бы его или ее фамилии), не могут они быть и черными, поскольку профессор Уайт ответил (ответила) особе с черными волосами.
Следовательно, они должны быть каштановыми. Если у девушки не каштановые волосы, то профессор Уайт не может быть девушкой.
Браун мужчина, поэтому девушкой должен быть профессор Блэк.
Так как ее волосы не могут быть ни черными, ни каштановыми, она должна быть платиновой блондинкой.
7. Поскольку при полете из A в В дует попутный, а при полете из В в А — встречный ветер, многие поддаются искушению и думают, что опережение графика в первом случае и запоздание во втором компенсируют друг друга, так что полное время в полете остается таким же, как и при отсутствии ветра. Такое заключение неверно, ибо время полета с попутным ветром меньше, чем время полета против встречного ветра, в силу чего в итоге самолет запаздывает. Полное время полета при постоянном по величине и направлению ветре, независимо от этой величины и направления, всегда больше, чем в безветренную погоду.
8. Пусть х — число первоначально купленных хомяков (и равное ему число купленных попугаев), у — число хомяков среди семи оставшихся непроданными обитателей зоомагазина. Тогда число непроданных попугаев равно 7—у. Число проданных хомяков (по цене 2,20 доллара за штуку — 2 доллара «себестоимость» + 10 % надбавки) равно х — у, а число проданных попугаев (по 1,10 доллара за каждого) равно х — 7 + у.
Вырученная хозяином сумма составляет 2х долларов за хомяков и х долларов за попугаев, то есть всего 3,3x — 1,1y -7,7 долларов. От продажи хомяков хозяин получил 2,2(х — у) долларов, а от продажи попугаев — 1,1(х — 7 + у) долларов, то есть всего 3,3x — 1,1у — 7,7 доллара.
Приравняв оба полученных выражения для выручки, мы после упрощений получим следующее диофантово уравнение с двумя целочисленными неизвестными:
3x = 11у + 77.
Поскольку х и у — целые положительные числа и у не может превышать 7, проще всего подставить вместо у восемь возможных значений (в том числе и нулевое) и посмотреть, при каком из них х также принимает целое значение. Таких значений только два: 5 и 2. Каждое из них можно было бы считать решением задачи, если бы не одно обстоятельство: попугаев покупают парами. Это дополнительное условие исключает у = 2, так как при этом х (число проданных попугаев) был бы равен нечетному числу 33. Следовательно, у = 5.
Теперь уже ничто не мешает нам восстановить полную картину.
Владелец зоомагазина приобрел 44 хомяка и 22 пары длиннохвостых попугаев, уплатив за всю покупку 132 доллара. Он продал 39 хомяков и 21 пару попугаев за 132 доллара. Оставшиеся пять хомяков стоят (с учетом надбавки) 11 долларов, а два попугая — 2,20 доллара, то есть всего 13,20 доллара. Эта сумма — ответ задачи — и определяет потенциальную прибыль хозяина.
Глава 38. ВЫРЕЗАНИЕ ИЗ БУМАГИ
В главе 31 уже говорилось о занимательных задачах, возникающих при одном лишь складывании листа бумаги без разрезания. Еще более интересные и поистине неисчерпаемые возможности по-новому, иногда с довольно неожиданной точки зрения взглянуть на давно знакомые теоремы планиметрии открываются перед нами, когда в игру вступают ножницы.
Рассмотрим, например, хорошо известную теорему о том, что сумма внутренних углов любого треугольника равна развернутому углу (то есть составляет 180°). Вырежем из листа бумаги треугольник, поставим рядом с каждой его вершиной жирную точку и обрежем все его углы. Сложив помеченные точкой уголки вместе, вы убедитесь, что три внутренних угла треугольника действительно образуют развернутый угол (рис. 193,а).
Рис. 193 Доказательство теорем планиметрии с помощью ножниц.
Попробуем проделать такую же операцию с внутренними углами любого (в том числе и не выпуклого, как на рис. 193,б) четырехугольника. Четыре отрезанных угла в сумме всегда дают полный угол (360°). Продолжив стороны любого выпуклого многоугольника за вершины так, как показано на рис. 193, в, мы получим так называемые внешние углы (на рисунке они отмечены точками). Независимо от того, сколько сторон в многоугольнике, вырезав и приложив друг к другу его внешние углы, мы всегда получим угол в 360°.
Если одна или несколько сторон многоугольника пересекаются, мы получаем то, что иногда принято называть самопересекающимся многоугольником. Хорошо известным примером таких многоугольников может служить пятиугольная звезда, или пентаграмма, — символ братства пифагорейцев. Начертите звезду сколь угодно неправильной формы (если хотите, можно нарисовать даже одну из вырожденных звезд, изображенных на рис. 194, у которых одна или две вершины расположены внутри тела звезды), отметьте точками углы при вершинах, вырежьте звезду и отрежьте все помеченные углы, приложив их один к другому.
Рис. 194 Заставив спичку скользить вдоль сторон этих звезд, мы убедимся в том, что сумма углов, отмеченных точками, равна 180°.
Вы с удивлением обнаружите, что углы при вершинах любой звезды, так же как и внутренние углы треугольника, в сумме всегда составляют развернутый угол. Справедливость этой теоремы подтверждается и другим, не менее причудливым эмпирическим методом, который можно было бы назвать методом скользящей спички. Начертив большую звезду, положим на одну из ее сторон спичку (как следует класть спичку, показано на рис. 194). Будем сдвигать спичку вдоль стороны до тех пор, пока ее головка не совпадет с вершиной звезды, а затем повернем спичку влево так, чтобы она расположилась вдоль другой стороны нашей звезды. Ориентация спички на плоскости изменилась по сравнению с первоначальной на угол, равный углу при вершине звезды. Сдвинем теперь спичку вдоль новой стороны до следующей вершины и проделаем там то же самое. Так будем продолжать до тех пор, пока спичка не вернется в исходное положение. При этом она, описав по часовой стрелке угол в 180°, окажется перевернутой: ее головка будет направлена не вверх, а вниз. Угол, описанный спичкой, очевидно, равен сумме углов при пяти вершинах пятиугольной звезды.