Выбрать главу

– Я не в состоянии разглядеть здесь места, где первоначально были положены шары, но, если я не ошибаюсь – а я этого никогда не делаю, – по следам ясно, что животное сдвинуло ровно четыре шара.

– Это существенно, мистер Сомс? – нервно спросила леди Баске́, держа на руках карликового пуделя.

Сомс посмотрел в мою сторону.

– Да… возможно… – начал я и увидел, что Сомс незаметно кивнул. Ну конечно, кивнул он не совершенно незаметно, вы понимаете, поскольку если бы кивок действительно был незаметен, я бы его не увидел. Поняв кивок Сомса как завуалированное одобрение, я рискнул сказать наугад: – Благодаря этому обстоятельству можно вычислить первоначальное расположение шаров.

– И что, правда можно? – спросила она с полным надежды взглядом.

Каким же было первоначальное расположение шаров? Ответ см. в главе «Загадки разгаданные».

Цифровые кубы

Это старая история, но она может послужить нам прелюдией к менее известному вопросу. Число 153 равно сумме кубов составляющих его цифр:

1³ + 5³ + 3³ = 1 + 125 + 27 = 153.

Существуют еще три трехзначных числа, обладающих таким же свойством, если не принимать во внимание такие числа, как 001, с начальными нулями. Сможете найти их?

Ответ см. в главе «Загадки разгаданные».

Самовлюбленные числа

Загадка с кубами приобрела некоторую известность потому, что в 1940 г. знаменитый математик Годфри Харолд Харди написал в книге «Апология математика»[6], что подобные головоломки не имеют никакой математической ценности, поскольку зависят от используемой нотации (в данном случае десятичной) и представляют собой всего лишь случайные совпадения. Однако, разгадывая такие загадки, можно почерпнуть немало полезных знаний в области математики, а обобщения (к примеру, расширение задачи на другие системы счисления, помимо десятичной) позволяют обойти вопрос нотации.

Один из вариантов этой головоломки – концепция самовлюбленного числа, которое определяется как число, равное сумме n-х степеней составляющих его десятичных цифр для некоторого n. Если речь идет о явно заданном n, используется термин n-совершенное число.

Четвертые степени цифр (4-самовлюбленные числа)

Будем записывать число, составленное из цифр a, b, c, d, как [abcd], чтобы отличать его от соответствующего произведения abcd. То есть [abcd] = 1000a + 100b + 10c + d. Мы должны решить уравнение:

[abcd] = a4 +b4 +c4 + d4,

где все неизвестные являются целыми числами и лежат в диапазоне от 0 до 9. Эту задачу никак нельзя называть тривиальной. Попробуйте!

Ответ см. в главе «Загадки разгаданные».

Пятые степени цифр (5-самовлюбленные числа)

На этот раз задача состоит в том, чтобы решить уравнение:

[abcde] = a5 + b5 + c5 + d5+ e5,

что, как несложно догадаться, еще труднее.

Ответ в главе «Загадки разгаданные».

Более высокие степени цифр (n-самовлюбленные числа для n ≥ 6)

Несложно доказать, что n-самовлюбленные числа существуют только для n ≤ 60, поскольку при любом n > 60 мы имеем 9n < 10n–1. В 1985 г. Дик Уинтер доказал, что существует ровно 88 самовлюбленных чисел с ненулевой первой цифрой. Для n = 1 в этой роли выступают все десять цифр (мы включаем сюда 0, потому что в данном случае это единственная цифра числа). Для n = 2 самовлюбленных чисел не существует. Для n = 3, 4, 5 см. ответы к разделу о цифровых кубах и две предыдущие задачи. Для n ≥ 6 получаем следующие числа:

Пифилология, пиэмы и пиллиш

Now, I wish I could recollect pi.

«Eureka», cried the great inventor.

Christmas pudding; Christmas pie

is the problem's very centre.

See, I have a rhyme assisting

my feeble brain,

its tasks sometimes resisting.

How I wish I could enumerate pi easily, since all these horrible mnemonics prevent recalling any of pi's sequence more simply.

Последняя фраза выдает нас с головой: все приведенные фразы – это мнемонические правила – тексты, помогающие запомнить часть числа π. Придумано даже слово для подобных вещей: пифилология. Чтобы воспользоваться таким мнемоническим правилом, нужно сосчитать буквы в последовательных словах: 3, 1, 4, 1, 5, …

вернуться

6

Харди Г. Апология математика. – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000.