Попробуйте расшифровать ее.
РЕШЕНИЕ
Вы догадались, вероятно, что числа, входящие в задачу, написаны не по десятичной системе, – иначе вопрос «чему равно 84» был бы нелепым. Пусть основание неизвестной системы счисления есть х. Число «84» означает тогда 8 единиц второго разряда и 4 единицы первого, т. е.
«84» = 8х + 4.
Число «54» означает 5х + 4.
Имеем уравнение 8 · 8 = 5х + 4, т. е. в десятичной системе 64 = 5x + 4, откуда x = 12.
Числа написаны по двенадцатеричной системе, и «84» = 8 · 12 + 4 = 100. Значит, если 8 · 8 = «54», то «84» = 100.
Подобным же образом решается и другая задача в этом роде:
Чему равно 100, когда 5 · 6 = 33?
Ответ: 81 (девятеричная система счисления).
Уравнение думает за нас
Если вы сомневаетесь в том, что уравнение бывает иной раз предусмотрительнее нас самих, решите следующую задачу.
Отцу 32 года, сыну 5 лет. Через сколько лет отец будет в 10 раз старше сына?
РЕШЕНИЕ
Обозначим искомый срок через х. Спустя х лет отцу будет 32 + х лет, сыну 5 + х. И так как отец должен тогда быть в 10 раз старше сына, то имеем уравнение
32 + х = 10 (5 + х).
Решив его, получаем х = –2.
«Через минус 2 года» означает «два года назад». Когда мы составляли уравнение, мы не подумали о том, что возраст отца никогда в будущем не окажется в 10 раз превосходящим возраст сына – такое соотношение могло быть только в прошлом. Уравнение оказалось вдумчивее нас и напомнило о сделанном упущении.
Курьезы и неожиданности
При решении уравнений мы наталкиваемся иногда на ответы, которые могут поставить в тупик малоопытного математика. Приведем несколько примеров.
I. Найти двузначное число, обладающее следующими свойствами. Цифра десятков на 4 меньше цифры единиц. Если из числа, записанного теми же цифрами, но в обратном порядке, вычесть искомое число, то получится 27.
Обозначив цифру десятков через х, а цифру единиц – через у, мы легко составим систему уравнений для этой задачи:
Подставив во второе уравнение значение х из первого, найдем:
а после преобразований:
36 = 27.
У нас не определились значения неизвестных, зато мы узнали, что 36 = 27… Что это значит?
Это означает лишь, что двузначного числа, удовлетворяющего поставленным условиям, не существует и что составленные уравнения противоречат одно другому.
В самом деле: умножив обе части первого уравнения на 9, мы найдем из него:
9y – 9x = 36,
а из второго (после раскрытия скобок и приведения подобных членов):
9у – 9x = 27.
Одна и та же величина 9у – 9х согласно первому уравнению равна 36, а согласно второму 27. Это безусловно невозможно, так как 36 ≠ 27.
Подобное же недоразумение ожидает решающего следующую систему уравнений:
Разделив первое уравнение на второе, получаем:
ху = 2,
а сопоставляя полученное уравнение со вторым, видим, что
т. е. 4 = 2. Чисел, удовлетворяющих этой системе, не существует. (Системы уравнений, которые, подобно сейчас рассмотренным, не имеют решений, называются несовместными.)
II. С иного рода неожиданностью встретимся мы, если несколько изменим условие предыдущей задачи. Именно будем считать, что цифра десятков не на 4, а на 3 меньше, чем цифра единиц, а в остальном оставим условие задачи тем же. Что это за число?
Составляем уравнение. Если цифру десятков обозначим через х, то число единиц выразится через х + 3. Переводя задачу на язык алгебры, получим:
Сделав упрощения, приходим к равенству 27 = 27.
Это равенство неоспоримо верно, но оно ничего не говорит нам о значении х. Значит ли это, что чисел, удовлетворяющих требованию задачи, не существует?
Напротив, это означает, что составленное нами уравнение есть тождество, т. е. что оно верно при любом значении неизвестного х. Действительно, легко убедиться в том, что указанным в задаче свойством обладает каждое двузначное число, у которого цифра единиц на 3 больше цифры десятков:
14 + 27 = 41,
47 + 27 = 74,
25 + 27 = 52,
58 + 27 = 85,
36 + 27 = 63,
69 + 27 = 96.
III. Найти трехзначное число, обладающее следующими свойствами:
1) цифра десятков 7;
2) цифра сотен на 4 меньше цифры единиц;