Сколько весит весь воздух
Чтобы убедиться, насколько облегчаются практические вычисления при пользовании степенным изображением больших чисел, выполним такой расчет: определим, во сколько раз масса земного шара больше массы всего окружающего его воздуха.
На каждый кв. сантиметр земной поверхности воздух давит, мы знаем, с силой около килограмма. Это означает, что вес того столба атмосферы, который опирается на 1 кв. см, равен 1 кг. Атмосферная оболочка Земли как бы составлена вся из таких воздушных столбов; их столько, сколько кв. сантиметров содержит поверхность нашей планеты; столько же килограммов весит вся атмосфера. Заглянув в справочник, узнаем, что величина поверхности земного шара равна 510 млн кв. км, т. е. 51·107 кв. км.
Рассчитаем, сколько квадратных сантиметров в квадратном километре. Линейный километр содержит 1000 м, по 100 см в каждом, т. е. равен 105 см, а кв. километр содержит (105)2 = 1010 кв. сантиметров. Во всей поверхности земного шара заключается поэтому:
51 · 107 · 1010 = 51 · 1017 кв. сантиметров.
Столько же килограммов весит и атмосфера Земли. Переведя в тонны, получим:
51 · 1017: 1000 = 51 · 1017: 103 = 51 · 1017–3 = 51 · 1014.
Масса же земного шара выражается числом:
6 · 1021 тонн.
Чтобы определить, во сколько раз наша планета тяжелее ее воздушной оболочки, производим деление:
6 · 1021: 51 · 1014» 106,
т. е. масса атмосферы составляет примерно миллионную долю массы земного шара.
Разнообразие погоды
ЗАДАЧА
Будем характеризовать погоду только по одному признаку, – покрыто ли небо облаками или нет, т. е. станем различать лишь дни ясные и пасмурные. Как вы думаете, много ли при таком условии возможно недель с различным чередованием погоды?
Казалось бы, немного: пройдет месяца два, и все комбинации ясных и пасмурных дней в неделе будут исчерпаны; тогда неизбежно повторится одна из тех комбинаций, которые уже наблюдались прежде.
Попробуем, однако, точно подсчитать, сколько различных комбинаций возможно при таких условиях. Это – одна из задач, неожиданно приводящих к пятому математическому действию.
Итак: сколькими различными способами могут на одной неделе чередоваться ясные и пасмурные дни?
РЕШЕНИЕ
Первый день недели может быть либо ясный, либо пасмурный; имеем, значит, пока две «комбинации».
В течение двухдневного периода возможны следующие чередования ясных и пасмурных дней:
ясный и ясный
ясный и пасмурный
пасмурный и ясный
пасмурный и пасмурный.
Итого в течение двух дней 22 различного рода чередований. В трехдневный промежуток каждая из четырех комбинаций первых двух дней сочетается с двумя комбинациями третьего дня; всех родов чередований будет
22 · 2 = 23.
В течение четырех дней число чередований достигнет
23 · 2 = 24.
За пять дней возможно 25, за шесть дней 26 и, наконец, за неделю 27 = 128 различного рода чередований.
Отсюда следует, что недель с различным порядком следования ясных и пасмурных дней имеется 128. Спустя 128 · 7 = 896 дней непременно должно повториться одно из прежде бывших сочетаний; повторение, конечно, может случиться и раньше, но 896 дней – срок, по истечении которого такое повторение неизбежно. И обратно: может пройти целых два года, даже больше (2 года и 166 дней), в течение которых ни одна неделя по погоде не будет похожа на другую.
Замóк с секретом
ЗАДАЧА
В одном советском учреждении обнаружен был несгораемый шкаф, сохранившийся с дореволюционных лет. Отыскался и ключ к нему, но чтобы им воспользоваться, нужно было знать секрет замка; дверь шкафа открывалась лишь тогда, когда имевшиеся на двери 5 кружков с алфавитом на их ободах (36 букв) устанавливались на определенное слово. Так как никто этого слова не знал, то, чтобы не взламывать шкафа, решено было перепробовать все комбинации букв в кружках. На составление одной комбинации требовалось 3 секунды времени.
Можно ли надеяться, что шкаф будет открыт в течение ближайших 10 рабочих дней?
РЕШЕНИЕ
Подсчитаем, сколько всех буквенных комбинаций надо было перепробовать.
Каждая из 36 букв первого кружка может сопоставляться с каждой из 36 букв второго кружка. Значит, двухбуквенных комбинаций возможно
36 · 36 = 362.
К каждой из этих комбинаций можно присоединить любую из 36 букв третьего кружка. Поэтому трехбуквенных комбинаций возможно