Выбрать главу

Сколько весит весь воздух

Чтобы убедиться, насколько облегчаются практические вычисления при пользовании степенным изображением больших чисел, выполним такой расчет: определим, во сколько раз масса земного шара больше массы всего окружающего его воздуха.

На каждый кв. сантиметр земной поверхности воздух давит, мы знаем, с силой около килограмма. Это означает, что вес того столба атмосферы, который опирается на 1 кв. см, равен 1 кг. Атмосферная оболочка Земли как бы составлена вся из таких воздушных столбов; их столько, сколько кв. сантиметров содержит поверхность нашей планеты; столько же килограммов весит вся атмосфера. Заглянув в справочник, узнаем, что величина поверхности земного шара равна 510 млн кв. км, т. е. 51·107 кв. км.

Рассчитаем, сколько квадратных сантиметров в квадратном километре. Линейный километр содержит 1000 м, по 100 см в каждом, т. е. равен 105 см, а кв. километр содержит (105)2 = 1010 кв. сантиметров. Во всей поверхности земного шара заключается поэтому:

51 · 107 · 1010 = 51 · 1017 кв. сантиметров.

Столько же килограммов весит и атмосфера Земли. Переведя в тонны, получим:

51 · 1017: 1000 = 51 · 1017: 103 = 51 · 1017–3 = 51 · 1014.

Масса же земного шара выражается числом:

6 · 1021 тонн.

Чтобы определить, во сколько раз наша планета тяжелее ее воздушной оболочки, производим деление:

6 · 1021: 51 · 1014» 106,

т. е. масса атмосферы составляет примерно миллионную долю массы земного шара.

Разнообразие погоды

ЗАДАЧА

Будем характеризовать погоду только по одному признаку, – покрыто ли небо облаками или нет, т. е. станем различать лишь дни ясные и пасмурные. Как вы думаете, много ли при таком условии возможно недель с различным чередованием погоды?

Казалось бы, немного: пройдет месяца два, и все комбинации ясных и пасмурных дней в неделе будут исчерпаны; тогда неизбежно повторится одна из тех комбинаций, которые уже наблюдались прежде.

Попробуем, однако, точно подсчитать, сколько различных комбинаций возможно при таких условиях. Это – одна из задач, неожиданно приводящих к пятому математическому действию.

Итак: сколькими различными способами могут на одной неделе чередоваться ясные и пасмурные дни?

РЕШЕНИЕ

Первый день недели может быть либо ясный, либо пасмурный; имеем, значит, пока две «комбинации».

В течение двухдневного периода возможны следующие чередования ясных и пасмурных дней:

ясный и ясный

ясный и пасмурный

пасмурный и ясный

пасмурный и пасмурный.

Итого в течение двух дней 22 различного рода чередований. В трехдневный промежуток каждая из четырех комбинаций первых двух дней сочетается с двумя комбинациями третьего дня; всех родов чередований будет

22 · 2 = 23.

В течение четырех дней число чередований достигнет

23 · 2 = 24.

За пять дней возможно 25, за шесть дней 26 и, наконец, за неделю 27 = 128 различного рода чередований.

Отсюда следует, что недель с различным порядком следования ясных и пасмурных дней имеется 128. Спустя 128 · 7 = 896 дней непременно должно повториться одно из прежде бывших сочетаний; повторение, конечно, может случиться и раньше, но 896 дней – срок, по истечении которого такое повторение неизбежно. И обратно: может пройти целых два года, даже больше (2 года и 166 дней), в течение которых ни одна неделя по погоде не будет похожа на другую.

Замóк с секретом

ЗАДАЧА

В одном советском учреждении обнаружен был несгораемый шкаф, сохранившийся с дореволюционных лет. Отыскался и ключ к нему, но чтобы им воспользоваться, нужно было знать секрет замка; дверь шкафа открывалась лишь тогда, когда имевшиеся на двери 5 кружков с алфавитом на их ободах (36 букв) устанавливались на определенное слово. Так как никто этого слова не знал, то, чтобы не взламывать шкафа, решено было перепробовать все комбинации букв в кружках. На составление одной комбинации требовалось 3 секунды времени.

Можно ли надеяться, что шкаф будет открыт в течение ближайших 10 рабочих дней?

РЕШЕНИЕ

Подсчитаем, сколько всех буквенных комбинаций надо было перепробовать.

Каждая из 36 букв первого кружка может сопоставляться с каждой из 36 букв второго кружка. Значит, двухбуквенных комбинаций возможно

36 · 36 = 362.

К каждой из этих комбинаций можно присоединить любую из 36 букв третьего кружка. Поэтому трехбуквенных комбинаций возможно