Выбрать главу

8. Линейные преобразования. Систему уравнений, записанную в начале предыдущего пункта, можно рассматривать как линейное преобразование совокупности величин x1, x2, ..., xn в совокупность y1, y2, ..., ym. Это преобразование полностью определяется коэффициентами aij (i = 1, 2, ..., m; j = 1, 2, ..., n). На языке матриц линейное преобразование y = Ax означает преобразование столбца х в столбец у, которое определяется матрицей преобразования А.

Пусть величины x1, x2, ..., xn получаются из некоторой совокупности величин z1, z2, ..., zn посредством линейного преобразования x = Bz, где x и z — столбцы соответствующих величин; В — матрица их преобразования. Тогда формальной подстановкой х в первое матричное уравнение получаем

y = Ax = A(Bz) = (AB)z = Cz,

где C = AB — матрица преобразования величин z и y. К этому же результату можно прийти путем подстановки значений x1, x2, ..., xn из второй системы уравнений в первую с учетом введенного ранее правила умножения прямоугольных матиц.

9. Обратная матрица. В обычной алгебре два числа, произведение которых равно единице, называют взаимно обратными. Число, обратное числу a обозначают через a-1 и по определению aa-1 = 1

- 37 -

Аналогично в матричной алгебре две квадратные матрицы, произведение которых равно единичной матрице, т.е. AA-1 = A-1A = 1, называют взаимно обратными ( A-1 обратна A). Однако дальше этого аналогия не проходит.

Выражение a-1b, где a и b — числа, можно представить как частное от деления b на a, но для матриц такое представление не имеет смысла и в общем случае A-1B ≠ BA-1. Поэтому вместо операции деления В на А различают левое частное A-1B и правое частное BA-1, которые сводятся к умножению слева или справа на обратную матрицу A-1.

Способ обращения матрицы проще всего установить, рассматривая решение системы n линейных уравнений с n неизвестными:

В матричной форме эта система уравнений запишется как Ax = q, где А — квадратная матрица n-го порядка, называемая матрицей системы: x и q — столбцевые матрицы неизвестных переменных и свободных членов:

Матричное уравнение Ax = q решается умножением обеих его частей слева на обратную матрицу A-1 т.е. A-1Ax = A-1q в результате получаем x = A-1q.

В соответствии с правилом Крамера неизвестные xk(k = 1, 2, ..., n) определяются соотношением:

где Δ — определитель системы уравнений Δsk — алгебраические дополнения.

- 38 -

Определитель Δ представляет собой числовую функцию, которая вычисляется по определенным правилам на основании квадратной таблицы, состоящей из коэффициентов системы уравнений

Табличное представление определителя Δ по форме совпадает с матрицей системы уравнений, т.е. состоит из тех же элементов и в том же порядке, что и матрица А. В таких случаях его называют определителем матрицы А и записывают Δ = detA.

Алгебраическое дополнение Δsk вычисляется как определитель матрицы, полученной удалением из матицы A s-й строки и k-го столбца, причем этот определитель умножается еще на (-1)s+k. Величину Δsk называют также алгебраическим дополнением элемента ask матрицы A. Часто определитель матрицы А обозначается через |A|, а алгебраическое дополнение — через Ask.

Записав для всех элементов столбцевой матрицы x выражения по правилам Крамера, получим решение системы уравнений в виде:

- 39 -

откуда, сравнивая с A-1q, имеем

Из полученного выражения следует правило определения обратной матрицы: 1) элементы aij данной матрицы A n-го порядка заменяются их алгебраическими дополнениями Δij: 2) матрица алгебраических дополнений транспонируется, в результате чего получаем присоединенную или взаимную матрицу к А ( она обозначается через AdjA); 3) вычисляется определитель Δ матрицы А и присоединенная матрица AdjA умножается на величину, обратную этому определителю.

Обратная матрица существует для матрицы А при условии, что detA ≠ 0. Такие матрицы называются неособенными, в отличие от особенных (вырожденных), определитель которых равен нулю. Ниже вычисление обратной матрицы иллюстрируется примером: