Графические методы обладают наглядностью и успешно используются как для иллюстрации аналитических методов, так и непосредственно в инженерных расчетах. Они особенно удобны, если не требуется высокая точность или если интерес представляет качественная картина происходящих процессов. Например, графические построения на фазовой плоскости позволяют судить
- 15 -
о характере колебаний в системе, ее устойчивости и т.п. Графические методы используются при решении теоретико-множественных уравнений, минимизации логических функций, статистической обработке результатов наблюдений и во многих других случаях. Инженеры привыкли пользоваться графиками нелинейных характеристик компонентов и протекающих в системах процессов, полученных теоретически или экспериментально. К сожалению, графические методы ограничены возможностями построений на плоскости или в трехмерном пространстве, вследствие чего они применимы только для простых моделей. Особое место занимают методы теории графов, но и они теряют наглядность при усложнении модели. В практике инженерных расчетов графические методы часто используются совместно с аналитическими. В таких случаях их называют графоаналитическими методами.
Наиболее общими являются численные методы. Схема вычислений задается формулой или совокупностью правил (алгоритмом), выполнение которых в определенном порядке приводит к требуемому результату. В зависимости от характера вычислительного процесса численные методы подразделяются на прямые и итерационные.
При использовании прямых методов результат получается путем последовательных операций над числами и его точность зависит исключительно от точности промежуточных вычислений. В итерационных метода результат получается путем последовательных приближений, начиная от некоторых начальных значений. Каждое последующее значение (итерация) вычисляется по одной и той же схеме, представляющей собой цикл вычислительного процесса. Необходимым условием работоспособности итерационного метода является сходимость последовательности итераций к искомой величине или совокупности величин, т.е. возможность получения результата с требуемой точностью. Практически требуется также достаточная скорость сходимости итерационного процесса, т.е. достижение требуемой точности таким количеством итераций, которое реализуется в данных конкретных условиях. Часто прямые методы называют точными, а итерационные — приближенными. Однако эти названия не связаны непосредственно с точностью получаемых результатов. Нередко, как раз наоборот, результаты, полученные прямыми методами, уточняются с помощью итерационных процессов.
В настоящее время разработано огромное количество вычислительных процедур, обслуживающих различные задачи исследования математических моделей. К ним относятся, например, численные методы интегрирования и дифференцирования, интерполяции и приближения функций, решения систем различных типов алгебраических и дифференциальных уравнений, оптимизации, исследования
- 16 -
устойчивости и т.д. С развитием вычислительной техники численные методы становятся незаменимым средством проектирования, организации производства и научных исследований.
8. Использование вычислительных машин. Пока вычислительные средства ограничивались арифмометром и логарифмической линейкой, инженер мог использовать в своей работе только сравнительно простой математический аппарат. В современных условиях все большее значение приобретает применение развитого математического аппарата в сочетании с высокопроизводительной вычислительной техникой.
Возрастающая роль математического моделирования в инженерном деле обусловлена характерными особенностями развития техники. Это, прежде всего, усложнение технических проектов, жесткие технико-экономические условия, требования высокого качества и надежности в условиях массового производства, сжатые сроки проектирования и освоения новых изделий. В то же время математическое моделирование опирается на большой парк вычислительных машин, отличающихся принципом действия и уровнем специализации, производительностью и объемом памяти, способами программирования и организацией связей с внешними устройствами.