9. Математическое образование инженера. Значение математического образования в подготовке инженеров за последние десятилетия сильно возросло. Совершенствованием содержания и методики преподавания высшей математики в вузах постоянно занимаются крупнейшие ученые и педагоги. Однако существующее положение вещей оставляет желать много лучшего. «Обучают ли наших студентов всему тому, что им нужно или что им может быть нужно?» - ставит вопрос академик С. Л. Соболев и отвечает: «Этого сказать нельзя. Даже в университетах программы не поспевают за жизнью, но особенно это заметно во втузах.»
Складывается необычная ситуация. Благодаря глубокой реформе преподавания математики в средней школе многие школьники теперь изучают такие разделы, о которых инженеры даже не слышали в свои студенческие годы. В школьные программы вводятся важные разделы современной математики — теория множеств, математическая логика и др. А начальное знакомство с некоторыми положениями теории графов в порядке опыта проводится даже в старших группах детских садиков (об этом свидетельствует книга «Дети и графы» супругов Папи, перевод которой вышел в 1974 г. в издательстве «Педагогика»).
Вузовский курс высшей математики в значительной мере дополняется при изучении специальных инженерных дисциплин, в которых излагается необходимый математический аппарат. По существу изучение математики в вузах на различных уровнях продолжается в течение всего периода учебы студентов. Большую роль в математической подготовке инженеров играют спецкурсы и учебные
- 19 -
пособия по тем разделам, которые не нашли должного отражения в основном курсе высшей математики.
Конечно, под влиянием требований все более усложняющейся инженерной практики изучение математики в вузах с каждым годом совершенствуется и углубляется. Постепенно видоизменяются учебные программы, пересматриваются традиционные методы преподавания, изменяется отношение к многим классическим разделам, которым приходится потесниться, чтобы освободить место и время для важнейших разделов современной математики. Но как бы ни были совершенны программы и учебники, каким бы мастерством не владели преподаватели, сколько бы ни отводилось для математических дисциплин часов в учебных планах, невозможно изучить впрок все то, что потребуется из математики для будущей инженерной деятельности. Математическое образование инженера не заканчивается в вузе, более того, оно не заканчивается никогда.
Если бы даже кому-нибудь удалось достаточно полно установить, что может понадобиться инженеру из математики, то такая обширная программа оказалась бы практически не реализуемой в рамках учебных планов. Но и само прогнозирование развития математического аппарата инженера на несколько десятилетий вперед — дело чрезвычайно трудное. Опыт показывает, что многие математические теории, которые не имеют сегодня непосредственного приложения в технике, завтра могут оказаться необходимыми для решения новых инженерных задач и послужить основой для дальнейшего расширения и обогащения математического аппарата инженера.
Следует учитывать также и психологические аспекты математического образования. Ясно, что интерес к изучению какого-либо раздела математики существенно зависит от того, заготавливаются ли знания впрок или же они требуются для решения конкретной прикладной задачи. В последнем случае овладение знаниями, навыками и умением проходит значительно эффективнее и глубже, так как процесс обучения подогревается острой практической потребностью.
Итак, постоянное совершенствование математических знаний должно рассматриваться как естественный процесс в творческой деятельности инженера.
2. Множества
1. Что такое множество? Ответить на этот вопрос не так просто, как это кажется на первый взгляд. В повседневной жизни и практической деятельности часто приходится говорить о некоторых совокупностях различных объектов: предметов, понятий, числе, символов и т.п. Например, совокупность деталей механизма, аксиом
- 20 -
геометрии, чисел натурального ряда, букв русского алфавита. На основе интуитивных представлений о подобных совокупностях сформировалось математическое понятие множества как объединения отдельных объектов в единое целое. Именно такой точки зрения придерживался основатель теории множеств немецкий математик Георг Кантор.
Множество относится к категории наиболее общих, основополагающих понятий математики. Поэтому вместо строгого определения обычно принимается некоторое основное положение о множестве и его элементах. Так, группа выдающихся математиков, выступающая под псевдонимом Н. Бурбаки, исходит из следующего положения: «Множество образуется из элементов, обладающих некоторыми свойствами и находящихся в некоторых отношениях между собой или с элементами других множеств».