Выбрать главу

Нам нужен язык, на котором это можно доказать. И вот для того, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться теоремой Перельмана или Пуанкаре — Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, глобуса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).

Рис. 29. Начало большого пути в топологию.

С точки зрения топологии, любой многогранник — это тоже шар. Тетраэдр — это шар, куб — это шар, октаэдр, любой параллелепипед — это всё шары. Например, потому что если их выполнить из резины и надуть, то получится футбольный мяч, то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии.

Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, поверхность бублика, поверхность кренделя неодинаковые?[10] В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после того, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко второй задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее.

Эйлер сделал следующее. Он нанес на поверхность шара многогранник — картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо помнить, что рассматривается «Земной шар», не содержащий морей и океанов.) При этом вся поверхность шара должна быть покрыта многоугольниками.

Рис. 30. А вы не пробовали жить на «Земном шаре» в форме огромного бублика? А заметили бы жители, что это не шар, если бы небо всегда было закрыто беспросветными тучами?

Главное, чтобы каждая страна была простым плоским объектом, без дырочек, — как круг или квадрат. И далее он сделал то же самое с велосипедной камерой. Нанес такой многогранник, который является как бы «остовом» каретного колеса (машинных колес в то время еще не было!). При этом вовсе не обязательно, чтобы количество и вид граней, а также количество вершин и ребер этого многогранника для шара и для колеса были одинаковы. Более того, они и не могут быть одинаковыми (как мы увидим ниже).

А потом стал считать у этих многогранников эйлерову характеристику: величину В − Р + Г.

Число вершин минус число ребер плюс число граней. Как бы мы ни мяли и ни изгибали шар, наши грани — «страны» от этого не меняются. (Но, конечно, нельзя так смять страну, чтобы она вся превратилась в отрезок. Такого даже во время наполеоновских войн не происходило! А если говорить серьезно, то отрезок — одномерный объект, а страна — двумерный.) То есть вершины остаются вершинами, ребра — ребрами, а грани — какими были (например, изогнутым пятиугольником или треугольником), такими и остались. А значит, величина В − Р + Г не меняется. Теперь считаем эту величину на колесе (по науке поверхность колеса (или бублика) называется словом «ТОР». А тор, заполненный внутри, называется полноторием. Поверхность же шара называется, как известно, сферой). И если сфера может перейти в тор, то картинка на шаре перейдет в картинку на колесе. И, значит, их эйлерова характеристика должна быть одинакова.

Докажем, однако, что у любой фигуры, нарисованной на колесе, эйлерова характеристика равна 0, а у любой фигуры на шаре — равна 2.

Слушатель: А если бы получилась одна и та же цифра, то что?

А.С.: Мы не смогли бы сделать из этого никакого вывода. Мы бы не смогли сделать вывод, что они одинаковые, но не смогли бы сделать и вывод, что они разные. Но ведь есть и другие подходы, кроме формулы Эйлера. Для более сложных случаев.

вернуться

10

Мы не можем знать наверняка, но мне кажется, Эйлер просто не мог пройти мимо такого вопроса!