Выбрать главу

Однако, если мы хотим изменить топологический тип, то можно (и даже нужно) делать разрезы и склейки. Эти операции так часто применяются в топологии, что даже носят специальное название: «топологическая хирургия». Более того, практически любой интересный для изучения объект можно склеить из весьма простых кусков. Скажем, торическую поверхность можно получить склейкой нескольких треугольных кусков. А когда склейка будет закончена, места склеек будут определять некоторую «сеть» на торе. «Сеть», составленная из треугольников (естественно, криволинейных), называется «триангуляцией». Простейшая «сеть» на торе (рис. 37) не является триангуляцией, так как она получена не из треугольников, а из квадратов… точнее, из одного-единственного квадрата. Но этой беде легко помочь: когда мы выше делали операции в обратном порядке, надо было на исходном квадрате нарисовать диагональ (то есть вместо квадрата далее рассматриваются «два склеенных треугольника»). После двух вышеописанных склеек из этого квадрата получится триангуляция тора. Она состоит (хотя в это и трудно поверить) из двух граней, трех ребер и одной вершины (к которой подходят все шесть концов этих трех ребер!).

Можно порекомендовать слушателям купить свежеиспеченный бублик с маком и, прежде чем его съесть, внимательно осмотреть и понять, как именно проходят по его поверхности ребра данной триангуляции. Но специалист-тополог может представить себе эту триангуляцию даже с закрытыми глазами!

Проверьте, возьмите любую ненужную велосипедную камеру, разрежьте и попытайтесь развернуть. Сохранится тот факт, что грань выглядит как квадрат или как круг, то есть она, как говорят математики, топологически тривиальна. Она выглядит почти как обычная плоская фигура. А вот если мы снимем ребро (т. е. сотрем его с поверхности тора) и потом разрежем по оставшемуся ребру, у нас возникнет нетривиальная фигура в виде кольца. (Кстати, слово «тривиальный» восходит к слову «тривиум», обозначающему начальный уровень образования в средневековых университетах.)

Колечко на плоскости (рис. 38) не является топологически тривиальным, у него внутри дырка. Получается, что нам запрещено убирать это ребро, потому что мы изменим тривиальный объект на нетривиальный. Математика прошла долгий путь, прежде чем смогла понять, чем формально квадрат отличается от кольца.

Рис. 38. Ребро, охватывающее «дырку от бублика», стерли. Вдоль оставшегося ребра разрезали. Полученную трубку разогнули. Сильно увеличив радиус одного из концов трубки и прижав ее к плоскости, получили из нее кольцо. (Можно стереть вместо этого другое ребро: убедитесь в том, что получится то же самое, даже наглядно проще!)

Но если мы примем к сведению этот путь, то сможем воспользоваться его результатами. Сможем сказать, что можно снимать ребро тогда и только тогда, когда объект, который возникает, будет топологически тривиален, то есть будет похож на квадрат по своей топологической структуре. Именно поэтому я не имею права стирать на торе ребро.

Итак, чему равно В − Р + Г для нашей картинки (рис. 38)? Сколько у нас вершин?

Слушатели: Одна.

А.С.: Граней?

Слушатель: 4?

А.С.: Нет, одна грань. Эта одна и та же грань. Посмотрите, из любой точки грани я могу пройти в любую другую, не пересекая рёбра. А это значит, что грань одна.

На торе сейчас всего одна грань, одна вершинка и два ребра. Поэтому В − Р + Г = 0.

И всегда для тора будет ноль.

А к чему я приду на сфере, когда сниму все возможные ребра и вершины? Какой объект получится? (То есть мы не хотим останавливаться на сети в виде двух граней, охватывающих сферу сверху и снизу, как выше, а хотим сделать ее еще проще.) Я утверждаю, что в итоге останется просто голая сфера с одной вершиной. Все ребра будут сняты.

Слушатель: И как получится два?

А.С.: Вот как. У вас одна вершина, одна грань и ноль ребер. 1− 0 + 1 = 2 (см. рис. 39).

Рис. 39

Почему я не могу снять и точку тоже? Потому что, если я ее сниму, останется сфера, которая топологически не похожа на квадрат. А вот, если я сферу проколол… Что происходит с камерой мяча, который проткнули иголкой? Он сдувается и превращается (если сильно увеличить место прокола и наложить на плоскость) в лоскут — в плоскую фигуру. Сфера отличается от плоского куска только одной точкой. Очень хорошо это понимают грузины, буряты и тувинцы. Они делают большие пельмени (хинкали, позы и буузы).