Выбрать главу

Корреляция

Есть другой, и, может быть, лучший способ определения зависимости между раз­мерами выигрышей и проигрышей. Этот метод позволяет рассмотреть размеры выигрышей и проигрышей с совершенно другой стороны, и когда он использует­ся вместе с серийным f тестом, то взаимосвязь сделок измеряется с большей глуби­ной. Для количественной оценки зависимости или независимости данный метод использует коэффициент линейной корреляции г, который иногда называют пирсоновским r. Посмотрите на рисунок 1-2. На нем изображены две абсолютно коррелиро­ванные последовательности. Мы называем это положительной корреляцией.

Рисунок 1-2 Положительная корреляция (r =1,00)

Рисунок 1-3 Отрицательная корреляция (r = -1,00)

Теперь посмотрите на рисунок 1-3. Он показывает две последовательности, которые находятся точно в противофазе. Когда одна линия идет вверх, другая следует вниз (и наоборот). Мы называем это отрицательной корреляцией.

Формула для коэффициента линейной корреляции г двух последовательностей Х и Y такова (черта над переменной обозначает среднее арифметическое значение):

Расчет следует производить следующим образом:

1. Вычислите среднее Х и Y (т.е. X и Y )•

2. Для каждого периода найдите разность между Х и средним X, а также Y и средним Y.

3. Теперь рассчитайте числитель. Для этого для каждого периода пере­множьте ответы из шага 2, другими словами, для каждого периода ум­ножьте разность между Х и средним X, на разность между Y и средним Y.

4. Сложите результаты, полученные в шаге 3, за все периоды. Это и есть числитель.

5. Теперь найдите знаменатель. Для этого возьмите результаты шага 2 для каждого периода, как для разностей X, так и для разностей Y, и возве­дите их в квадрат (теперь они будут положительными значениями).

6. Сложите возведенные в квадрат разности Х за все периоды. Проделайте ту же операцию с возведенными в квадрат разностями Y.

7. Извлеките квадратный корень из суммы возведенных в квадрат разно­стей X, которые найдены в шаге 6. Теперь проделайте то же с Y, взяв квадратный корень суммы возведенных в квадрат разностей Y.

8. Умножьте два результата, которые вы нашли в шаге 7, то есть умножьте квад­ратный корень суммы возведенных в квадрат разностей Х на квадратный корень суммы возведенных в квадрат разностей Y. Это и есть знаменатель.

9. Разделите числитель, который вы нашли в шаге 4, на знаменатель, кото­рый вы нашли в шаге 8. Это и будет коэффициент линейной корреляции г.

Значение г всегда будет между +1,00 и -1,00. Значение 0 указывает, что корре­ляции нет.

Теперь посмотрите на рисунок 1-4. Он представляет следующую последова­тельность из 21 сделки:

Чтобы понять, есть ли какая-либо зависимость между предыдущей и текущей сделкой, мы можем использовать коэффициент линейной корреляции. Для зна­чений Х в формуле для г возьмем P&L по каждой сделке. Для значений Y в фор­муле для г возьмем ту же самую последовательность P&L, только смещенную на одну сделку. Другими словами, значение Y — это предыдущее значение X. (См. рисунок 1-5.).

Рисунок 1-4 Отдельные результаты 21 сделки

Рисунок 1-5 Отдельные результаты 21 сделки, сдвинутые на 1 сделку