Выбрать главу

Мы увидели, что лучшей торговой системой является система с наивыс­шим средним геометрическим. Для расчета среднего геометрического необ­ходимо знать f. Итак, давайте поэтапно опишем наши действия.

1. Возьмите историю сделок в данной рыночной системе.

2. Найдите оптимальное f, просмотрев различные значения f от 0 до 1. Опти­мальное f соответствует наивысшему значению TWR.

3. После того, как вы найдете f, возьмите корень N-й степени TWR (N — общее ко­личество сделок). Это и есть ваше среднее геометрическое для данной рыночной системы. Теперь можно использовать полученное среднее геометрическое, что­бы сравнивать эту систему с другими. Значение f подскажет вам, сколькими кон­трактами торговать в данной рыночной системе. После того, как найдено f, его можно перевести в денежный эквивалент, разделив наибольший проигрыш на отрицательное оптимальное/. Например, если наиболь­ший проигрыш равен 100 долларам, а оптимальное f = 0,25, тогда -100 долла­ров / -0,25 = 400 долларов. Другими словами, следует ставить 1 единицу на каж­дые 400 долларов счета. Для простоты можно все рассчитывать на основе единиц (например одна 5-долларовая фишка или один фьючерсный контракт, или 100 акций). Количество долларов, которое следует отвести под каждую единицу, мож­но рассчитать, разделив ваш наибольший убыток на отрицательное оптимальное f. Оптимальное f — это результат равновесия прибыльности системы (на основе 1 единицы) и ее риска (на основе 1 единицы). Многие думают, что оптимальная фиксированная доля — это процент счета, который отводится под ваши ставки. Это совершенно неверно. Должен быть еще один шаг. Оптимальное f само по себе не является процентом вашего счета, который отводится под торговлю, это дели­тель наибольшего проигрыша. Частным этого деления является величина, на ко­торую надо разделить общий счет, чтобы выяснить, сколько ставок сделать или сколько контрактов открыть на рынке.

Необходимо отметить, что залог под открытые позиции не имеет ничего общего с тем, какое математически оптимальное количество контрактов надо откры­вать. Залог не так важен, поскольку размеры отдельных прибылей и убытков не являются продуктом залоговых средств. Прибыли и убытки зависят от выигрыша и убытка в расчете на одну открытую единицу (один фьючерсный контракт). Для управления деньгами залог не имеет значения, так как размер убытка не ограни­чивается только залоговыми средствами. Многие ошибочно полагают, что f является линейной функцией, и чем боль­шей суммой рисковать, тем больше можно выиграть, так как по мнению сторонников такого подхода положительное математическое ожидание является зер­кальным отражением отрицательного ожидания, то есть если увеличение общего оборота в игре с отрицательным ожиданием в результате приносит более быст­рый проигрыш, то увеличение общего оборота в игре с положительным ожидани­ем в результате принесет более быстрый выигрыш. Это неправильно. В некоторой точке в ситуации с положительным ожиданием дальнейшее увеличение общего оборота работает против вас. Эта точка является функцией как прибыльности си­стемы, так и ее стабильности (то есть ее средним геометрическим), так как вы ре­инвестируете прибыли обратно в систему. Когда два человека сталкиваются с од­ной и той же последовательностью благоприятных ставок или сделок, и один ис­пользует оптимальное f, а другой использует любую другую систему управления деньгами, математическим фактом является то, что отношение счета держащего пари на основе оптимального f к счету другого человека будет увеличиваться с те­чением времени с все более высокой вероятностью. Через бесконечно долгое вре­мя держащий пари на основе оптимального f будет иметь бесконечно большее со­стояние, чем его оппонент, использующий любую другую систему управления деньгами, с вероятностью, приближающейся к 1. Более того, если участник пари ставит своей целью достижение определенного капитала, и он стоит перед серией благоприятных ставок или сделок, то ожидаемое время достижения этой цели бу­дет короче с оптимальным f, чем с любой другой системой ставок.

Давайте вернемся и рассмотрим последовательность ставок (сделок):

Мы уже знаем, что формула Келли не применима к этой последовательности, так как величины выигрышей и проигрышей отличаются. Ранее в этой главе мы усред­нили выигрыши и проигрыши и использовали эти средние значения в формуле Келли (так ошибочно поступают многие трейдеры). В результате, мы получили зна­чение f= 0,16. Было отмечено, что применение формулы Келли в данном случае некорректно и не дает нам оптимального f. Формула Келли работает только при постоянных выигрышах и проигрышах. Вы не можете усреднить торговые выигры­ши и проигрыши и получить истинное оптимальное f, используя формулы Келли. Наибольшее значение TWR при такой последовательности ставок (сделок) достигается при 0,24 (т.е. 1 доллар на каждые 71 доллар на счете). Это оптималь­ный геометрический рост, которого можно достичь при данной последователь­ности ставок (сделок) при торговле фиксированной долей. Давайте посмотрим, как меняется TWR при повторении этой последовательности ставок от 1 до 100 при f = 0,16 и f = 0,24. Мы видим, что использование значения f, которое ошибочно получено из формулы Келли, дало только 37,5% дохода, полученного при оптимальном f = 0,24 после 900 ставок или сделок (100 циклов из серий по 9 сделок). Другими словами, оптимальное f= 0,24, которое только на 0,08 отлича­ется от 0,16 (смещено от оптимального на 50%), принесло почти на 167% прибы­ли больше, чем f = 0,16 за 900 ставок!