В 1954 году, в возрасте 41 года, Алан Тьюринг покончил с собой. Так оборвалась жизнь одного из величайших ученых XX века. Его гениальность доказывает и тот факт, что химические вещества, существование которых он предсказал математически (так называемые морфогены), были открыты экспериментально лишь много лет спустя, в начале 1990-х. Кроме того, некоторые узоры из изученных Тьюрингом на компьютере Ferranti Mark I были обнаружены на чешуе рыбы полукруглый ангел, или Pomacanthus semicirculatus. В настоящее время морфогенез — одна из областей математической биологии, и удивительным путем, на который первым вступил Алан Тьюринг, проследовали такие видные ученые, как Мюррей, Мейнхардт и другие.
* * *
ЖИЗНЬ — ЭТО ИНФОРМАЦИЯ
За год до кончины Тьюринга, в 1953 году, Уотсон и Крик предложили спиралевидную модель ДНК. Ранее Джон фон Нейман и Алан Тьюринг, предвосхитив создание этой модели, писали: «Жизнь — это информация». Тем не менее модель ДНК, которая сегодня принимается всеми учеными, в свое время произвела фурор. Ее цепочка образована четырьмя азотистыми основаниями, которыми кодируются гены: А — аденин, Т — тимин, Г — гуанин и Ц — цитозин.
Параллельно с этим произошло еще одно важное событие — появилась информатика как наука. В компьютерах используется двоичная система счисления, и это означает, что вся информация кодируется последовательностями, состоящими всего из двух цифр, 0 и 1. Как следствие, компьютер — это машина, с помощью которой можно естественным образом исследовать жизнь, открывать ее элементы, проникать в тайны тончайших ее механизмов и делать прогнозы. С момента создания компьютер стал инструментом, позволившим установить тесную взаимосвязь между математикой и биологией. Со временем вычислительный подход, основанный Тьюрингом, не только способствовал укреплению этой взаимосвязи, но и привел к слиянию биологии и математики в новую дисциплину — математическую биологию.
Молекула ДНК, описанная Уотсоном и Криком в 1953 году.
* * *
Начиная с 1950—1960-х годов в математических исследованиях живых существ и жизни в целом, проводимых с помощью компьютеров, предполагалось, что растения, животные и микроорганизмы находятся в так называемом стационарном состоянии, и эта стабильность возможна благодаря механизмам саморегуляции, или гомеостаза. Чтобы поддерживать саморегуляцию, живым существам требовалось тратить большое количество энергии. Важность гомеостаза в биологии привлекла внимание ученых уже в 1940-х годах благодаря передовым исследованиям британского ученого Уильяма Росса Эшби. К примеру, организм человека естественным образом стремится к содержанию в крови определенного количества глюкозы. При ее избытке поджелудочная железа вырабатывает инсулин, при недостатке — глюкагон. Иными словами, для сохранения стабильности телу нужно постоянно работать.
При изучении жизни с математической точки зрения по возможности предполагается, что изучаемое явление имеет так называемое линейное поведение. Линейные системы изучать проще всего, так как их общее состояние или поведение на математическом языке описывается как сумма состояний или поведений частей такой системы. Представим себе примитивное живое существо (назовем его z), настолько простое, что оно имеет всего два органа — х и у. Если мы обозначим физиологические состояния х и у через f(х) и f(у), то жизненное состояние организма f(z) будет равно сумме состояний его органов: f(х) + f(у). В стационарном состоянии производная f(z) будет равна 0. Иными словами, математическая функция, описывающая жизненное состояние организма, не будет ни возрастать, ни убывать.
Линейные системы проще всего изучать с математической точки зрения.
Математическое изучение линейных систем связано с комплексным и органицистическим представлением о жизни Карла Людвига фон Берталанфи. Это представление, которое имеет отношение не только к биологии, но и к другим дисциплинам, описано в статье, опубликованной в 1968 году под названием «Общая теория систем: основы, развитие, применение» (General System Theory: Foundations, Development, Applications). По сути, эта теория оказала огромное влияние на то, как ученые используют компьютер для моделирования, то есть воссоздания, описания и прогнозирования столь разных явлений, как климат, метаболизм, жизнь клеток или поведение финансовых рынков. Система — это множество реально существующих объектов (частей или элементов системы) и абстрактных переменных, атрибутов, свойств и, что более важно, связей и взаимоотношений между этими элементами.