Выбрать главу

Важный момент теории систем фон Берталанфи заключается в том, что части системы взаимодействуют между собой, а сами системы являются незамкнутыми и взаимодействуют с окружающей средой. При этом из среды в систему поступает входная информация, результатом обработки или преобразования которой является ответ системы, или выходная информация, поступающая обратно в среду. Такие понятия, как саморегулирование и обратная связь, баланс и гомеостаз, в этой модели возникают естественным образом.

Глобальное видение природы, в которой система рассматривается как «всё», известно как холизм. В XX веке холизм оказал огромное влияние на то, как мы видим мир. Это влияние проявилось не только в биологии, но и в социологии, экономике, химии и даже лингвистике. Холизм повлиял и на способы применения математики для изучения реального мира. В экологии он был введен школой северо-американских экологов во главе с Говардом Одумом. В 1950-е годы Одум радикально изменил методы изучения всех проблем, связанных с окружающей средой, что вызвало появление системной биологии. В рамках этой дисциплины ученые рассматривают любое биологическое явление с холистической точки зрения и описывают событие посредством математической модели. К примеру, одна из классических моделей этой дисциплины — первая модель органа, созданная с помощью компьютера, а именно модель сердца, представленная Денисом Ноблом в 1960 году в журнале Nature. Этот британский исследователь сыграл важную роль в международном проекте Physiome, начатом в 1990-е годы, целью которого была расшифровка генома — совокупности генов организма. Расшифровка производилась с помощью компьютерного моделирования с использованием математических моделей физиологии.

Веб-страница одного из множества учреждений, связанных с проектом Physiome в сфере системной биологии.

Одной из особенностей проекта была интеграция разных уровней, начиная от биохимии и отдельных клеток и заканчивая целыми органами. Любопытная черта системной биологии заключается в том, что в этой дисциплине проекты реализуются междисциплинарными рабочими группами с участием биологов, физиков, математиков, информатиков и других специалистов. Противоположным подходом является редукционизм, который довольно долго применялся в биологии под влиянием многочисленных успехов молекулярной биологии. Прогресс в этой дисциплине привел к тому, что математическая биология на некоторое время ушла в тень, как и любые попытки «заняться математикой жизни». И все же накопление экспериментальных данных молекулярной биологии, а также удивительные успехи в изучении генов, белков и метаболизма во второй половине XX века привели к появлению геномики, протеомики и метаболомики — трех новых дисциплин, которые быстро начали набирать популярность во всем мире. Это заставило вновь вспомнить о системной биологии, а вместе с ней — и об изучении жизни количественными методами. Системная биология вновь вошла в моду лишь в конце XX столетия, и одновременно с этим вновь пробудился интерес к математической биологии.

1970-е — время перемен

В 1970-х годах ученые начали принципиально иначе рассматривать биологические явления, изменилась и «математика жизни». Решающее влияние на этот процесс оказали идеи Ильи Романовича Пригожина, лауреата Нобелевской премии по химии 1977 года. Согласно его теории диссипативных структур, системы, которые непрерывно обмениваются материей и энергией с окружающей средой (к ним относятся сложные химические реакции или ураганы), функционируют благодаря тому, что далеки от равновесного состояния. Одной из характеристик диссипативных систем является образование сложных структур, которые порой кажутся хаотичными. Эта особенность привлекла внимание ученых, вновь пересмотревших решения классических задач биологии. Биоматематики вернулись к давно известным проблемам, интерпретировав их в соответствии с теориями Пригожина. В качестве примера можно привести узоры, изученные Тьюрингом. По мнению ученого, однородная ткань, состоящая из очень похожих друг на друга зародышевых клеток, например клеток кожи позвоночных, находится в равновесном состоянии. Но как только между клетками начинают возникать отличия, на шкуре животного проявляется узор из полосок или пятен. Сохранение этого узора в течение всей жизни животного Тьюринг и Пригожин трактовали как ситуацию, далекую от равновесного состояния. Как следствие, уравнения реакции — диффузии стали одним из основных формальных инструментов, которые позволили биоматематикам изучить некоторые диссипативные системы, например уже упомянутые узоры на шкуре некоторых позвоночных.