Если мы пропустим ряд фотонов с различной поляризацией через горизонтальный фильтр, то увидим, что половина фотонов, поляризованных по диагонали, пройдет через фильтр, поменяв поляризацию на горизонтальную.
Какова связь между поляризацией фотонов и криптографией? Очень существенная, как мы увидим ниже. Для начала представим себе исследователя, который хочет определить поляризацию ряда фотонов. Для этого он выбирает фильтр с фиксированной ориентацией, например, горизонтальный. Предположим, что фотон прошел через фильтр. Какой вывод может сделать наш исследователь? Конечно, он может сказать, что исходная поляризация фотона не была вертикальной. А может он сделать другие предположения? Нет. Казалось бы, можно подумать, что более вероятно, что этот фотон был поляризован по горизонтали, а не по диагонали, потому что половина фотонов, поляризованных по диагонали, не проходит через фильтр.
Но зато число фотонов, поляризованных по диагонали, в два раза больше, чем с горизонтальной поляризацией. Важно подчеркнуть, что трудность определения поляризации фотона заключается не в каких-то технологических или теоретических проблемах, которые могут быть устранены в будущем; трудность является следствием самой природы мира частиц. Если использовать этот эффект надлежащим образом, то можно создать совершенно неуязвимый шифр, «святой грааль» криптографии.
Неуязвимый шифр
В 1984 г. американец Чарльз Беннет и канадец Жиль Брассар выдвинули идею системы шифрования на основе передачи поляризованных фотонов. Сначала отправитель и получатель договариваются, как разным поляризациям поставить в соответствие 0 или 1. В нашем примере это будет функцией двух видов поляризации: первый вид, называемый прямолинейной поляризацией и обозначаемый символом +, где 1 соответствует вертикальной поляризации , а 0 — горизонтальной , второй вид, называемый диагональной поляризацией и обозначаемый символом х, ставит в соответствие 1 диагональную поляризацию слева направо вверх , а 0 — диагональную поляризацию слева направо вниз .
Например, сообщение 0100101011 будет передано следующим образом:
Если шпион перехватит передачу, ему придется использовать фильтр с фиксированной ориентацией х:
Как мы видим, не зная изначального вида поляризации, шпион не может извлечь полезную информацию из поляризации, определенной фильтром. Даже зная правило соответствия 0 и 1, используемое отправителем и получателем, шпион будет ошибаться в трети из случаев, в которых вид поляризации выбирается случайным образом (в таблице показаны все возможные комбинации при описанных условиях). Однако проблема заключается в том, что получатель находится не в лучшем положении, чем шпион.
Хотя отправитель и получатель могут обойти эту проблему, послав друг другу последовательность видов поляризаций с помощью какого-то защищенного метода, например, RSA шифрования, но тогда шифр будет уязвим для гипотетических квантовых компьютеров.
Чтобы преодолеть это последнее препятствие, Брассару и Беннету пришлось усовершенствовать свой метод. Если читатель помнит, ахиллесовой пятой полиалфавитных шифров, таких как квадрат Виженера, являлось использование коротких повторяющихся ключей, из-за которых в шифре возникали закономерности, что создавало небольшую, но достаточную возможность для криптоаналитика взломать шифр. Но что было бы, если бы ключ представлял собой случайный набор символов и был длиннее, чем само послание, а каждое сообщение, даже самое незначительное, для большей безопасности было бы зашифровано другим ключом? Тогда бы у нас получился неуязвимый шифр.
Первым человеком, предложившим использовать полиалфавитный шифр с уникальным ключом, был Джозеф Моборн. Вскоре после Первой мировой войны, будучи начальником службы связи американского криптографического отдела, Моборн придумал блокнот с ключами, каждый из которых содержал более 100 случайных символов. Такие блокноты выдавались отправителю и получателю с инструкцией уничтожать использованный ключ и переходить к следующему. Эта система, известная как шифрблокнот одноразового назначения, является, как мы уже говорили, неуязвимой, и это можно доказать математически. И действительно, самые секретные послания между главами государств шифруются с помощью этого метода.