Выбрать главу

750  30 (mod 360)

Мы говорим: «750 сравнимо с 30 по модулю 360». В случае с часами мы бы написали

14  2 (mod 12).

Мы также можем представить себе часы с отрицательными числами. В этом случае который будет час, когда стрелка показывает на —7? Или, другими словами, с каким числом сравнимо число —7 по модулю 12? Давайте посчитаем, учитывая, что на наших часах с циферблатом, разделенным на 12 частей, значение 0 соответствует 12.

— 7 = —7 + 0 = —7 + 12 = 5.

* * *

ОТЕЦ АНАЛИТИЧЕСКОЙ КРИПТОГРАФИИ

Основная работа Евклида Александрийского, «Начала», состоит из 13 томов, в которых излагаются основные факты планиметрии, теории пропорций, свойства чисел, сведения об иррациональных числах и стереометрии. Чаще всего ассоциируемые с этой последней теорией, работы греческого математика, связанные с арифметическими операциями на конечных числовых множествах, или операциями по модулю, являются одним из столпов современной теории криптографии. Известные и почитаемые еще арабскими учеными, работы Евклида впервые были изданы в Венеции в 1482 г. Вовсе не случайно, что и арабы, и венецианцы были великими мастерами криптографии.

* * *

ОПЕРАЦИИ ПО МОДУЛЮ

Как посчитать 231 по модулю 17 на калькуляторе?

Сначала мы разделим 231 на 17 и получим 13,58823529.

Затем найдем произведение 13 x 17 = 221. Таким образом мы избавимся от дробной части.

Наконец, найдем разность 231–221 = 10, получив остаток отделения.

Итак, 231 по модулю 17 равно 10. Этот результат записывается как 231  10 (mod 17).

* * *

Математика для расчетов на наших часах со стрелками, циферблат которых разделен на 12 частей, называется арифметикой по модулю 12. В общем случае мы говорим, что b (mod m), если остаток от деления а на m равен b, при условии что а, b и m — целые числа. Число b сравнимо с остатком от деления а на m. Следующие утверждения эквивалентны:

b (mod m)

a (mod m)

а — b  0 (mod m)

а b кратно m

Вопрос «Которому часу на часах со стрелками соответствует время 19 часов?» эквивалентен в математических терминах следующему вопросу: «С каким числом сравнимо число 19 по модулю 12?» Чтобы ответить на этот вопрос, мы должны решить уравнение

19  х (mod 12).

Разделив 19 на 12, мы получим частное 1 и остаток 7, поэтому

19  7 (mod 12).

А в случае 127 часов? Разделив 127 на 12, мы получим частное 10 и остаток 7, поэтому

127  7 (mod 12).

Чтобы повторить изученное до сих пор, давайте рассмотрим следующие операции по модулю 7:

(1) 3 + 3  6

(2) 3 + 14  3

(3) 3 х 3 = 9  2

(4) 5 x 4 = 20  6

(5) 7  0

(6) 35  0

(7) -44 = -44 + 0 = -44 + 7 х 7  5

(8) -33 = -33 + 0 = -33 + 5 x 7  2

(1) 6 меньше, чем модуль, поэтому не меняется

(2) 3 + 14 = 17; 17: 7 = 2 и в остатке 3.

(3) 3 X 3 = 9; 9: 7 = 1 и в остатке 2.

(4) 5 х 4 = 20; 20: 7 = 2 и в остатке 6.

(5) 7 = 7; 7: 7 = 1 и в остатке 0.

(6) 35 = 35; 35: 7 = 5 и в остатке 0.

(7) -44 = -44 + 0; 44 + 7 х 7  5.

(8) -33 = -33 + 0; -33 + 5 x 7  2.

* * *

ТАБЛИЦА УМНОЖЕНИЯ ПО МОДУЛЮ 5 В EXCEL

Построить такую и подобные таблицы очень легко даже с базовыми знаниями офисной программы Excel. В нашем случае синтаксис функций для ячеек Excel (для столбцов и строк на нашем компьютере) показан ниже. Действие «остаток отделения числа на 5» переводится на язык Excel как «=ОСТАТ(число;5)». Конкретная операция по нахождению произведения 4 на 3 по модулю 5 записывается как «=ОСТАТ (4∙3;5)» и дает результат 2. Подобные таблицы очень помогают в расчетах по модульной арифметике.