Выбрать главу

До Эйнштейна полагали, что роль сил тяготения принципиально не отличается от роли электромагнитных сил, т. е. что действие тех и других сил состоит в сбивании материальной точки с того кратчайшего пути, по которому она двигалась бы в отсутствие сил. Эйнштейн решил этот вопрос совершенно новым и неожиданным образом. Если под силами подразумевать те причины, по которым график движения материальной точки перестает быть кратчайшей или прямейшей линией, то загадка сил тяготения получает следующее парадоксальное разрешение: сил тяготения вообще не существует! существует только свойство тяжелых тел создавать вокруг себя такие неевклидовы свойства пространства, такое, как говорят, «искривление» пространства, благодаря которому материальная точка движется в отсутствие электромагнитных сил не по тем линиям, по каким она бы двигалась в случае евклидовой метрики, а по другим.

Из предыдущего ясно, что поле тяготения является в эйнштейновой теории геометрическим свойством пространства, поскольку оно может быть вычислено по значениям тех коэффициентов, которыми определяется длина проведенных в четырехмерном пространстве Эйнштейна—Минковского кривых линий. Заслуга Эйнштейна заключается в том, что он нашел закон, которому должно удовлетворять поле этих метрических коэффициентов в четырехмерном пространстве («закон тяготения Эйнштейна»). Роль материи сводится к тому только, что присутствие материи вызывает искривление пространства и нарушение первоначальных евклидовых его свойств. Отсюда ясно, что в теории относительности Эйнштейна электромагнитные силы и силы тяготения играют принципиально различную роль: силы тяготения вытекают непосредственно из геометрических свойств четырехмерной пространственно-временной совокупности точек-событий, между тем как электромагнитные силы не имеют ничего общего с геометрией и не могут быть вычислены по заданным значениям компонентов метрического фундаментального тензора.

Такое различие между электромагнитными и гравитационными силами считалось недостатком теории, и многие исследователи пытались создать такую теорию электромагнитного поля, в которой электрические и магнитные величины вычислялись бы из геометрических свойств пространства-времени. Одной из попыток такого рода является теория Калуцы (1921 г.). Вместо четырехмерной совокупности точек Калуца рассматривал пятимерную, в которой число метрических коэффициентов было поэтому больше, чем в четырехмерной совокупности. Потенциалы электромагнитного поля вычислялись им из этих коэффициентов. Теория Калуцы не имела успеха, хотя его идеи сыграли некоторую роль (пятимерная совокупность точек была снова введена в 1927 г. немецким математиком Оскаром Клейном и русским математиком В. А. Фоком в их математическом истолковании волновой механики Шредингера). К другим попыткам свести электромагнитное поле к геометрическим свойствам пространственно-временного мира принадлежит теория, разработанная цюрихским математиком Германом Вейлем. Эта теория также не смогла удовлетворительно описать электромагнитные явления, как и теория Калуцы. Обе теории удовлетворительно справлялись с уравнениями электромагнитного поля в пустоте, но не могли объяснить законов движения материи в этом поле.

Теория Эйнштейна, о которой идет речь в этой заметке, ставит перед собой такую же самую цель — включение электромагнитного поля в систему чисто геометрических величин. Для того чтобы понять новую теорию Эйнштейна, названную им «единой теорией поля», нужно рассмотреть понятие о параллелизме в неевклидовой геометрии. Пусть в неевклидовом пространстве дана точка 1 и в ней задано некоторое направление (например, направление некоторого бесконечно малого отрезка, начинающегося в точке 1). Пусть через точку 2 того же неевклидового пространства требуется провести отрезок, параллельный заданному бесконечно малому отрезку в точке 1. Простейшим способом является следующий. Соединим точки 1 и 2 геодезической (кратчайшей) линией и будем перемещать вдоль этой линии бесконечно малый отрезок из точки 1 в точку 2 так, чтобы при каждом бесконечно малом перемещении, на которые можно разложить его путь от точки 1 к точке 2, он оставался параллелен самому себе. Ясно, что, придя в точку 2, он будет находиться под тем же углом к касательной, проведенной к геодезической линии, под которым он находился в точке 1. На первый взгляд может казаться, что то положение, которое отрезок принял в точке 2, можно считать параллельным его первоначальному направлению в точке 1. Однако с этим связаны трудности. Если, например, дана, кроме точек 1 и 2, еще и точка 3, то можно было бы переместить бесконечно малый отрезок параллельно самому себе сперва из точки 1 к точке 3 по соединяющей их геодезической линии, а затем из точки 3 к точке 2 по геодезической линии 3 2. Окажется, что после двух таких перемещений бесконечно малый отрезок будет занимать в точке 2 не то положение, какое он имел бы при непосредственном перемещении параллельно самому себе по геодезической линии 1 2, а другое.