Выбрать главу

Паули не счел предположение Бора основательным и в противовес выдвинул собственную гипотезу. В декабре 1930 г. в письме «собранию радиоактивных дам и господ», собравшихся в Тюбингене, «имея в виду "неправильную" статистику ядер N и Li6»[35], а также непрерывный спектр р-распада, Паули «предпринял отчаянную попытку спасти теорему статистики и закон сохранения энергии» [252, с. 390]. Он предположил, что в ядрах существуют нейтральные частицы спина 1/2, которые при р-распаде вылетают из ядер вместе с электронами и, обладая большой проникающей способностью, уносят с собой «несохраняющуюся» часть энергии. Присутствие таких частиц в ядре могло предотвратить и азотную катастрофу. Вскоре Паули, однако, понял, что одной нейтральной частицей обе эти проблемы решить нельзя. И в июне 1931 г. он впервые публично (но лишь устно) сообщил о своем плане спасения ЗС с помощью нейтральных, весьма проникающих частиц, сопровождающих р-распад [Там же, с. 393].

В октябре 1931 г. на международной конференции по ядерной физике в Риме противостоящие гипотезы встретились. Хотя Паули нашел там важного союзника — Ферми (которому новая частица — нейтрино — стала обязана своим именем и теорией), большинство участников конференции склонялись к точке зрения Бора, впервые опубликованной именно в Трудах Римской конференции. Реферируя этот сборник, Бронштейн писал: «Согласно взглядам Бора, которые теперь уже, кажется, стали почти общепринятыми среди теоретиков, законы сохранения энергии и количества движения, представляющие одну из наиболее характерных черт современной физической теории, должны перестать соблюдаться в области релятивистской теории квант» [68] (при чем здесь «релятивистская теория квант», мы увидим в следующем разделе).

Паули же не решался публиковать свою нейтринную гипотезу вплоть до Сольвеевского конгресса в октябре 1933 г. Там было сообщено о резкой верхней границе р-спектра, согласующейся с ЗС, а две экспериментально открытые новые частицы — нейтрон и позитрон — жили в физике уже на полных правах. После этого конгресса и в особенности после построенной Ферми вскоре, в самом конце 1933 г., теории р-распада число физиков, сомневающихся в ЗС, стало уменьшаться и обратилось в нуль в 1936 г. после драматического, но длившегося всего несколько месяцев кризиса, связанного с опытами Шэнкланда.

Эти опыты, изучавшие комптоновское рассеяние в области высоких энергий, противоречили фотонной теории и законам сохранения. Сильное волнение, вызванное результатами Шэнкланда, и вспыхнувшие вновь дискуссии о применимости ЗС в микромире, кажутся сейчас объяснимыми только верой в сказочный закон, согласно которому третья попытка всегда успешна. Опыты Шэнкланда были очень скоро опровергнуты и забыты. Тогда же исчезли сомнения в ЗС.

Точку в этой истории Бор поставил в заметке, которая сопровождала публикацию экспериментов, опровергающих Шэнкланда: «основания для серьезных сомнений в строгой справедливости законов сохранения при испускании р-лучей атомным ядром сейчас в основном устранены» [119]. В словах «серьезных» и «в основном» можно усмотреть горечь по поводу разрыва родительских уз, связывающих Бора с гипотезой несохранения. Описывая историю нейтрино в 1957 г., Паули не без некоторого недоумения отметил: «Впрочем, справедливость закона сохранения энергии при р-распаде и существование нейтрино он [Бор] признал полностью лишь в 1936 г., когда уже была успешно развита теория Ферми» [Там же, с. 394].

А теперь рассмотрим внимательнее ход интересующих нас событий и попытаемся понять мотивы их участников.

4.2. Гипотеза несохранения и мотивы ее сторонников

а) В ожидании релятивистской теории квант. Первые сомнения Бора в ЗС, порожденные его антипатией к эйнштейновским квантам света, нашли мало сочувствия не только за пределами его группы, но и среди его сотрудников. Не разделял эти сомнения даже Слетер, на основе идеи которого (о виртуальном поле излучения) и в соавторстве с которым Бор в 1924 г. попытался реализовать «закон несохранения энергии» [202, с.138]. При этом следует сказать, что сомнения в идее световых квантов были довольно широко распространены, и не только среди физиков старшего поколения. Например, Ландау в 1927 г., рассматривая квантование электромагнитного излучения, сказал: «Введение световых квантов, однако, произвольно и не является необходимым» [213, с. 21] (в то же время Бронштейн, как видно по его первым работам, был на фотонных позициях). Квантовый парадокс (как называли тогда проблему совмещения дискретного и непрерывного описаний) скорее вдохновлял теоретиков, находящихся на подъеме. Сама сила парадокса предвещала такое его разрешение в теории, которое могло превзойти разрешение эфирных парадоксов теорией относительности. Но отказ от ЗС при отсутствии нового принципа, способного заменить его, для большинства теоретиков не имел тогда серьезных оснований.

вернуться

35

Речь идет о так называемой азотной катастрофе. Свойства атомного ядра существенно зависят от четности числа составляющих его частиц. Ядро, состоящее из k нейтронов и l протонов, в те - донейтронные - времена считалось состоящим из k + l протонов и k электронов. Четности чисел k+l и 2k + l, вообще говоря, не совпадают (в частности, для азота).