Выбрать главу

Но так как теории создаются людьми, они несут на себе печать недостатков своих создателей. Бывает, что новая теория поначалу только кажется значительным достижением, но скоро от неё приходится отказаться. Любая теория распространяется лишь на ограниченное число явлений. Если многие эксперименты подтвердили справедливость теории в каких-то пределах, то её можно безбоязненно применять в этих рамках, необходимо только внимательно следить, чтобы их не перешагнуть.

Именно так обстоит дело с классической теорией. Объекты обычных размеров, движущиеся с привычными скоростями, удовлетворительно описываются классическими законами движения, но стоило учёным попытаться распространить эти законы на атомы и микромир вообще, как оказалось, что тут классические законы не работают, что-то с ними было не так.

Тем не менее вера в классическую теорию была настолько велика, что на осознание пределов её применимости потребовалось довольно много времени. Часть этих пределов стала заметна ещё в конце XIX века, но большинству учёных они представлялись лишь небольшими недостатками, прорехами, которые без труда можно залатать. Один учёный на рубеже XX века даже публично заявил, что о Вселенной известно практически всё, т.е. обнаружены все основные законы. Он и не подозревал, что вот-вот в физике начнётся настоящая революция.

Первый революционный шаг сделал немецкий физик Макс Планк. Пытаясь исправить один из серьёзных недостатков классической теории, он в 1900 году понял, что требуется совершенно новый подход. Планк предположил, что излучение, например свет, испускается «порциями», а не непрерывно, как считалось ранее. Хотя сам он полагал, что лишь «заделывает дыры» в одном из уравнений классической теории, придуманные им «порции», или, как он их назвал, кванты, оказались чрезвычайно важны и вскоре заняли центральное место в описании микромира.

Здесь уместно отметить следующее. За несколько лет до этого было показано, что свет имеет волновую природу. Как же он может одновременно состоять из частиц – квантов? В 1923 году французский принц Луи де Бройль преодолел это затруднение – он ввёл представление о корпускулярно-волновом дуализме, причём не только для излучения, но и для вещества. Де Бройль показал, что взаимодействие электронов с излучением легче всего понять, если считать, что электроны ведут себя и как частицы, и как волны.

Поначалу эта идея показалась учёным абсурдной. Как электрон может быть волной? Но де Бройль принадлежал к королевскому роду, и открыто смеяться над его диссертацией, в которой содержалось такое предположение, было неловко. С другой стороны, как будет выглядеть комиссия, если после защиты выяснится, что это злая шутка? Казалось, ситуация безвыходная – диссертацию нельзя ни принять, ни отвергнуть. Тогда решили обратиться к эксперту – Альберту Эйнштейну, и каково же было всеобщее изумление, когда выяснилось, что идея ему чрезвычайно понравилась и показалась справедливой.

Эйнштейн не ошибся – в 1927 году Дэвиссон и Джермер из Соединённых Штатов экспериментально доказали, что электроны обладают волновыми свойствами. Направляя пучок электронов на кристалл, они наблюдали на экране картину из светлых и тёмных полос; такая картина могла получиться, только если электроны вели себя как волны. Позднее было показано, что частицы любого вида дают такую же картину – вещество действительно обладает волновыми свойствами.

Математическую форму представлениям о корпускулярно-волновом дуализме придали в 1926 году Эрвин Шрёдингер и независимо от него Вернер Гейзенберг. Но созданная ими теория отличалась от всех других – она была вероятностной. Из неё следовали не точные и строгие предсказания, а лишь вероятности происхождения тех или иных событий. Американские телезрители знакомы с такими вероятностными предсказаниями. Перед каждым большим праздником по радио и телевидению сообщают, что в выходные дни на автодорогах погибнут, скажем, около 700 человек. После праздников оказывается, что число жертв составляет действительно около 700. Конечно, невозможно заранее сказать, кто именно погибнет; точно так же квантовая теория позволяет предсказать, что три атома из десяти в ближайшие 10 минут претерпят радиоактивный распад, хотя не даёт возможности узнать, какие именно.

Эйнштейн внёс важный вклад в квантовую теорию на раннем этапе её развития, но не мог согласиться с тем, что за ней останется последнее слово. Ему казалось, что она в лучшем случае представляет собой лишь приближение, и рано или поздно квантовую теорию, сменившую непригодную для описания микромира классическую, заменит более глубокая теория. Дело не в том, что квантовая теория не позволяла получить точные значения – этот аспект у него возражений не вызывал. Беспокоили Эйнштейна философские выводы – то, что она говорила нам о физическом мире. Выходило, что ничего нельзя вычислить точно, можно только определить вероятности, т.е. квантовая теория – статистическая. При её помощи можно предсказать, что в среднем произойдёт с пучком частиц, но не с каждой отдельной частицей пучка. Эйнштейн был уверен, что более глубокая теория позволит определять и судьбу отдельных частиц.

Нильс Бор – главный сторонник квантовой теории, несмотря на дружбу с Эйнштейном, никогда не разделял этого мнения. Более того, их взгляды на квантовую теорию были диаметрально противоположны, а спор о её философских следствиях растянулся на долгие годы. Не совсем ясную позицию Бора понять было нелегко (теперь её называют копенгагенской интерпретацией). В её основе лежат сформулированный немецким физиком Вернером Гейзенбергом принцип неопределённости, из которого следует, что на атомном уровне имеется некоторая «размытость»» и предложенный Бором принцип дополнительности, поясняющий, как следует рассматривать элементарные частицы. Например, электрон ведёт себя то как частица, то как волна. Принцип дополнительности гласит, что эти аспекты дополняют друг друга, т.е. могут существовать только по отдельности.

Один из вопросов, который следует из копенгагенской интерпретации, звучит так: «Что мы понимаем под реальностью?». Квантовая механика даёт ответ, в котором как будто мало толку – по крайней мере, с точки зрения того, что мы называем здравым смыслом. Большинство из нас считает, что объективный мир существует вне нас, т.е. вне зависимости от того, регистрируем ли мы происходящие в нём события. В копенгагенской же интерпретации этот вопрос трактуется иначе; всё в окружающем физическом мире зависит от способа измерения; этот мир не существует до выполнения измерения. Например, электрон может быть волной или частицей в зависимости от способа измерения. Более того, положение и импульс частицы (произведение её массы на скорость) зависят от того, как мы их измеряем.

Рассмотрим последнее утверждение подробней, Оно следует из принципа неопределённости, в соответствии с которым нельзя одновременно измерить импульс и координату частицы. При измерении импульса нарушается положение частицы – она находится уже не там, где раньше. Но тогда возникает вопрос, существуют ли в действительности положение и импульс? Потенциально – да, но каждый из них обретает реальность только после измерения, а так как в каждый момент можно измерить только один из этих параметров, приходится говорить, что другой не существует. Иными словами, вне нас нет объективной реальности – она появляется только тогда, когда мы выполняем измерения.

Изображения от электронов, проходящих через одну щель (слева) и через две щели (справа). Высота кривой соответствует интенсивности излучения, попадающего на экран

Можно взглянуть на это и с другой стороны, если вспомнить о принципе дополнительности. Эксперимент, который позволяет понять некоторые его следствия, известен как опыт с двумя щелями. Предположим, что на экран, расположенный позади щели, направлен пучок электронов. Когда щель одна, большинство электронов проходит в неё в виде частиц; несколько из них, возможно, отклонится у краев щели, но мы ими пренебрежём. Получаемая на экране картина показана на левом рисунке. Теперь предположим, что рядом с первой щелью на некотором расстоянии от неё установлена вторая и электроны падают сразу на обе. В этом случае, как ни странно, картина получается совершенно иной (см. правый рисунок).