Выбрать главу

Кроме того, в легенде любой карты обычно указывается ее масштаб. Каково расстояние между двумя точками Земли? Казалось бы, чтобы ответить на этот вопрос, нужно взять линейку, измерить расстояние между этими точками на карте и пересчитать полученную величину с учетом масштаба. Но, как мы уже отмечали, в этом случае нужно измерить длину не прямой, соединяющей две точки, а воображаемой кривой (части большой окружности). Причем даже если мы измерим длину кривой, результат по-прежнему будет неверным, так как наша карта не сохраняет неизменными длины кривых и расстояния, а ее масштаб в разных частях отличается. Продолжим наши рассуждения и поставим еще один вопрос: сохраняются ли в проекции Меркатора площади? Как нам хорошо известно, изображение Гренландии на этой карте даже чуть больше, чем изображение Африки. Но в действительности площадь Гренландии равна примерно 2175600 км2, площадь Африки — 29800000 км2.

Следовательно, контуры стран на карте также очень сильно искажены. Наконец, зададимся вопросом: сохраняются ли на картах румбы, направления и углы? Углы между меридианами и параллелями равны 90°, как и на нашей карте. Но если мы посмотрим на карту на следующей странице, то увидим, что это не так — углы не сохраняются. Эта карта выполнена в одной из классических проекций, которая называется ортографической, и показывает Землю так, как будто мы смотрим на нее из бесконечно удаленной точки.

Следовательно, карты не обладают ни одним из ожидаемых свойств: они не сохраняют расстояния, кратчайшие пути, площади и углы. Может быть, нам не хватает каких-то знаний? Так, существует целое множество картографических проекций: кроме упомянутых проекции Меркатора и ортографической проекции, используются равновеликая цилиндрическая проекция Ламберта, равновеликая коническая проекция Альберса, проекция Моллвейде, ортографическая проекция Галла — Петерса, проекция Eckert IV, центральная, стереографическая, равноугольная коническая проекция Ламберта, биполярная косая равноугольная коническая проекция, цилиндрическая равнопромежуточная, азимутальная равнопромежуточная, тройная проекция Винкеля, проекция Ван дер Гринтена, UTM, проекция Бонне, проекции Eckert I–IV, гомолосинусоидальная проекция Гуда, Хаммера, Вернера, Бризмейстера, равновеликая цилиндрическая проекция Бермана, проекция Робинсона и многие другие. Картограф Джон Снайдер в своей книге «Как Земля стала плоской» (Flattening the Earth) описывает свыше 300 картографических проекций. Возникает вопрос: почему существует столько карт? Насколько они точны? Какая — точнее всех? Как нарисовать точную карту Земли? И наконец, какую карту можно считать точной?

В этой книге мы постараемся ответить на эти вопросы, а также подробно рассказать о картах, которые мы видим каждый день. При изучении карт не обойтись без дифференциальной геометрии, которая входит в курсы картографии для таких специальностей, как география, судовождение, океанология и другие. Однако мы стремимся избежать специальных терминов и рассказать о картах с интуитивно понятной, «геометрической» точки зрения, поэтому будем использовать только методы классической геометрии (в частности, геометрии Евклида и тригонометрии). Приближенные равенства, которые мы будем приводить во многих рассуждениях, исчезают при переходе к пределу, однако в этом случае мы применим лишь самые основы дифференциального и интегрального исчисления, относящиеся к дифференциальной геометрии.

Глава 1

Форма Земли

«Во-первых, — сказал Сократ, — если Земля кругла и находится посреди неба, она не нуждается ни в воздухе, ни в иной какой-либо подобной силе, которая удерживала бы ее от падения…

Далее, я уверился, что Земля очень велика и что мы, обитающие от Фасиса до Геракловых Столпов, занимаем лишь малую ее частицу; мы теснимся вокруг нашего моря, словно муравьи или лягушки вокруг болота.

Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи и пестро расписанный разными цветами…»[1]

Платон, «Федон, или О бессмертии души» (IV в. до н. э.)

Перед тем как приступить к составлению или изучению карт планеты, на которой мы живем и которая поэтому представляет для нас наибольший интерес, следует изучить ее форму и размеры. Так мы научимся определять положение точек на ее поверхности и отметим некоторые геометрические особенности Земли, которые интересовали ученых начиная с глубокой древности. Уже Клавдий Птолемей в «Географии» писал: «…Первое, что следует изучить [для того, чтобы создать карту мира] — это форма, размер и положение Земли относительно ее окрестностей [неба] так, чтобы мы смогли говорить об известной ее части, сколь велика бы она ни была […]. Эти деяния принадлежат к числу благороднейших и прекраснейших умственных занятий — узнаванию посредством математики… [природы] Земли по ее изображению…»

вернуться

1

Перевод С. П. Маркиша. — Примеч. ред.