Выбрать главу

Факсимиле глобуса Вальдземюллера (1507).

Изучив глобусы, созданные в разное время, можно увидеть, как при их создании использовались все более совершенные технологии и новая географическая информация. Перелом в усовершенствовании процесса изготовления глобусов, а также в развитии научных теорий, связанных с задачей о построении точной карты, произошел благодаря фламандскому картографу Герарду Меркатору. Он стремился создать глобус, который могли бы использовать мореплаватели и студенты, изучающие навигацию, поэтому на глобусах Меркатора были изображены, в частности, локсодромы. Однако многие созданные им глобусы стали всего лишь изысканными предметами интерьера в домах знати.

КАК СКОНСТРУИРОВАТЬ ГЛОБУС?

Хотя сфера — это, по сути, единственное геометрическое тело, позволяющее точно представить земную поверхность, конструирование сферической модели Земли связано с рядом технических проблем. Первая из них — размер: глобусы слишком малы, чтобы на них можно было рассмотреть все детали. Так, если бы на поверхности глобуса был изображен рельеф земной поверхности в масштабе, то гора Эверест имела бы высоту всего 0,28 мм. Вторая проблема — выбор материала для изготовления основы глобуса. В древности глобусы были полнотелыми и изготавливались из стекла, мрамора, дерева или металлов (золота, серебра, бронзы или свинца), однако начиная с Меркатора картографы стали изготавливать полые глобусы, например из бумажно-гипсовой массы, нанесенной на деревянный каркас. Современные глобусы попрежнему полые, однако технологии их изготовления непрерывно совершенствуются. Сегодня их изготавливают из бумаги, пластика или металла.

Начиная с Вальдземюллера используются отпечатанные развертки глобусов в виде склеенных сферических двуугольников, которые затем наклеиваются на поверхность сферы. При этом возникает та же проблема, что и при составлении карт: на плоском листе бумаги нужно отпечатать изображение, которое затем будет нанесено на поверхность глобуса. Обычно развертка глобуса состоит из 12 сферических двуугольников, центры которых лежат на экваторе. Развертка выполняется в видоизмененной синусоидальной проекции. Сегодня чаще используют две развертки из 12 треугольных секторов, центры которых совпадают с одним из полюсов. Каждая развертка полностью покрывает полушарие. Современные технологии позволяют наносить сферические двуугольники сразу на материал основания глобуса.

Развертка глобуса Мартина Вальдземюллера (1507).

* * *

Глобусы широко используются в картографии, географии, мореходном деле, геодезии, океанографии, климатологии, сейсмографии и других науках. Они позволяют получить реальное представление о том, как выглядит Земля, какую форму она имеет, как ее континенты расположены относительно друг друга. Поэтому важно, чтобы во всех школах и во всех домах был хотя бы один глобус, позволяющий увидеть, как на самом деле выглядит наша планета. Кроме того, благодаря особой конструкции подставки глобуса, мы можем наблюдать за вращением Земли: та часть глобуса, которую мы видим, будет соответствовать той части планеты, где сейчас день, невидимая часть глобуса — той части, где сейчас ночь.

Хотя в теории глобус — это идеальная модель Земли, ввиду некоторых непреодолимых ограничений иногда его использование невозможно (даже если сам глобус сконструирован безупречно).

1. Глобусы хрупкие и объемные, поэтому их сложно хранить, перевозить, а иногда с ними неудобно работать.

2. Производство глобусов очень дорого (особенно это касается моделей большого размера), при этом они недостаточно удобны для изучения деталей.

3. На них сложно выполнять измерения и оценивать величины углов.

4. Глобус позволяет рассматривать только одно полушарие одновременно.

5. Изготовить печатную или электронную репродукцию части глобуса нельзя.

Равнопромежуточные проекции

В завершение этой главы мы расскажем еще об одной группе проекций, обладающих общими метрическими свойствами. Как мы уже говорили, каждый картограф мечтает о карте с постоянным масштабом (коэффициентом уменьшения), единственным искажением которой будет равномерное изменение размера. Однако мы доказали, что построить такую карту невозможно: масштаб любого изображения Земли на плоскости не является постоянным и отличается в разных точках и направлениях, поскольку любая картографическая проекция неизбежно вносит искажения. Тем не менее существуют проекции, в которых некоторое семейство кривых будет иметь постоянный масштаб, а их длина будет пропорциональна длине этих кривых, начерченных на поверхности Земли (такие кривые называются стандартными). Проекции, обладающие этим свойством, называются равнопромежуточными. Рассмотрим три примера проекций этой группы: цилиндрическую, азимутальную и коническую.