Математическое описание этой проекции дал кембриджский математик Эдвард Райт (1561–1615). В книге «Ошибки в навигации, обнаруженные и исправленные» (1599, в 1610 году было выпущено дополненное издание) он не только привел новые навигационные таблицы и инструкции по определению фиксированных румбов на картах, составленных в проекции Меркатора, но и объяснил построение подобных карт. Он представлял сферическую модель Земли как полый шар, заключенный внутри цилиндра, касающегося шара на экваторе. Затем в этот шар закачивают воздух так, что он всё больше соприкасается с поверхностью цилиндра. Точки соприкосновения шара и цилиндра являются проекциями точек земной сферы.
Проекция Меркатора распространялась довольно медленно. Голландский картограф Петер Планциус использовал ее в 1594 году при составлении навигационных карт, а Иодокус Хондиус — при построении карты «Изображение всего круга земного» (Typus totus orbis terrarum, 1597) и других. И лишь в 1646–1647 годах в этой проекции Робертом Дадли был создан первый в истории морской атлас.
Карта «Изображение всего шара земного» (Typus totus orbis terrarum, 1597), также известная как «карта рыцаря Христова» Йодокуса Хондиуса, выполненная в проекции Меркатора. В средней части карты вы можете видеть рыцаря Христова, который сражается с Грехом, Сладострастием, Дьяволом и Смертью. Кроме того, Мир подносит ему чашу с ядом вавилонской блудницы, которая иногда использовалась как символ католической церкви.
* * *
МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ПРОЕКЦИИ МЕРКАТОРА
Чтобы оценить, на каком расстоянии от экватора должны изображаться параллели в проекции Меркатора, будем постепенно увеличивать широту, на которой мы будем применять соответствующий коэффициент масштаба. Если мы начнем отсчет с параллели широтой φ и будем откладывать небольшие интервалы длиной t, получим последовательность точек широтой t, 2t…., φ — t, φ , через которые будут проходить параллели. Так как искажение в направлении меридиана для широты α, как мы уже отмечали, должно равняться искажению вдоль параллели, равному sec φ, то искажение вдоль вертикали в отмеченных нами точках будет равно sec t, sec (2t), sec (φ — t), sec φ. Так как длина дуги сферы, заключенной между отмеченными точками, равна t, то высота, на которой будет проходить параллель широтой φ, будет равна:
t·sect + t·sec(2t) +… + t·sec(φ — t) + t·secφ.
Допустим, мы хотим оценить высоту, на которой будет проходить параллель широтой φ = 60°. Предположим, что выбранные интервалы имеют величину t = 10°. Так как sec 10° = 1,0154, sec 20° = 1,0642, sec 30° = 1,1547, sec 40° = 1,3055, sec 50° = 1,5557 и sec 60° = 2,0000, умножив эти числа на 10 и сложив полученные значения, получим 80,955. Иными словами, параллель широтой 60° должна будет проходить на высоте, на которой располагалась бы параллель широтой 80,955°, если бы параллели были равноудалены друг от друга.
Именно так рассуждал Эдвард Райт, можно предположить, что похожие рассуждения провел и Меркатор. Рассмотрим задачу в более современном виде. Для цилиндрической проекции, 30° в которой экватор является осью х, а параллель широтой φ — горизонтальной линией, проходящей на высоте у = h(φ), коэффициент масштаба (искажения) в направлении меридианов λ должен быть равен коэффициенту масштаба вдоль параллелей μ = 1/cos φ = sec φ. Получим:
Имеем
* * *
Вернемся к проекции Меркатора и напомним, что карта, выполненная в этой проекции, имеет следующие свойства.
1. Она имеет прямоугольную форму, так как выполнена в цилиндрической проекции.
2. Меридианы и параллели пересекаются под прямыми углами.