Так как теории струн включают в себя гравитоны и еще кучу других частиц, впервые возникает основа для построения возможной окончательной теории. Действительно, поскольку представляется, что наличие гравитона – неизбежное свойство любой теории струн, можно сказать, что такая теория объясняет существование гравитации. Эдвард Виттен, ставший позднее ведущим специалистом по теории струн, узнал об этой стороне теории в 1982 г. из обзорной статьи теоретика Джона Шварца. Он вспоминает, что эта мысль стала «величайшим интеллектуальным потрясением в моей жизни»[185].
Похоже, что теории струн сумели решить и проблему бесконечностей, сводившую на нет все предыдущие попытки построения квантовой теории тяготения. Хотя струны и выглядят как точечные частицы, все же главное в них то, что они не являются точечными. Можно убедиться, что бесконечности в обычных квантовых теориях поля непосредственно связаны с тем, что поля описывают точечные частицы. (Например, закон обратных квадратов для силы взаимодействия точечных электронов приводит к бесконечной величине силы, если поместить оба электрона в одну точку.) С другой стороны, должным образом сформулированная теория струн, похоже, вообще свободна от бесконечностей[186].
Интерес к теориям струн реально возник в 1984 г., после того, как Джон Шварц вместе с Майклом Грином показали, что две конкретные теории струн прошли проверку на математическую непротиворечивость (что не удавалось доказать в ранее изучавшихся струнных теориях)[187]. Наиболее волнующим свойством теорий, рассмотренных Грином и Шварцем, было то, что они обладали определенной жесткостью, той самой, которую мы хотели бы видеть в окончательной теории. Хотя можно было представить себе огромное количество разных теорий открытых струн, оказалось, что только две из них имеют смысл с математической точки зрения. Энтузиазм в отношении теорий струн достиг уровня лихорадки, когда одна группа теоретиков[188] показала, что низкоэнергетический предел двух теорий Грина-Шварца необычайно напоминает нашу сегодняшнюю модель слабых, электромагнитных и сильных взаимодействий, а другая группа (ее прозвали «Принстонский струнный квартет»[189]) обнаружила ряд струнных теорий, еще более соответствующих стандартной модели. Многим теоретикам показалось, что удалось ухватить окончательную теорию.
С тех пор энтузиазм несколько поостыл. Сейчас ясно, что существуют тысячи теорий струн, столь же математически состоятельных, как и первые две теории Грина-Шварца. Все эти теории удовлетворяют некоторой фундаментальной симметрии, известной как конформная симметрия. Такая симметрия возникает не из наблюдений природных явлений, как, скажем, эйнштейновский принцип относительности. Напротив, конформная симметрия представляется необходимой[190], чтобы гарантировать совместимость теорий струн с квантовой механикой. С этой точки зрения, тысячи разных теорий струн просто представляют разные способы удовлетворить требованиям конформной симметрии. Широко распространено мнение, что все эти разные теории струн на самом деле не разные, а лишь представляют различные способы решения уравнений одной и той же лежащей в основе всего теории. Но мы в этом не уверены, и никто не знает, какой могла бы быть такая теория.
Каждая из тысяч отдельных теорий струн обладает своей пространственно-временной симметрией. Некоторые из этих теорий удовлетворяют принципу относительности Эйнштейна, в других теориях мы не можем даже различить что-то, напоминающее обычное трехмерное пространство. Кроме того, каждая теория струн обладает своими внутренними симметриями того же общего типа, как и внутренние симметрии, лежащие в основе сегодняшней стандартной модели слабых, электромагнитных и сильных взаимодействий. Но главное отличие теорий струн от всех более ранних теорий заключается в том, что пространственно-временные и внутренние симметрии не задаются в теории струн руками, а являются математическими следствиями конкретного способа, которым законы квантовой механики (а следовательно, требование конформной симметрии) удовлетворяются в каждой конкретной теории струн. Поэтому теории струн потенциально представляют собой важный шаг вперед в рациональном объяснении природы. Кроме того, они, по-видимому, являются наиболее глубокими, математически непротиворечивыми теориями, совместимыми с принципами квантовой механики, и в частности, единственными такими теориями, включающими что-то, похожее на тяготение.
Довольно много современных молодых физиков-теоретиков работают над развитием теории струн. Получено несколько вдохновляющих результатов. Например, оказалось, что в рамках теории струн естественно получается равенство констант взаимодействия сильных и электрослабых взаимодействий при очень больших энергиях, определяемых через натяжение струны, хотя и нет отдельной симметрии, объединяющей эти взаимодействия. Тем не менее, до сих пор не удается получить детальные количественные предсказания, позволяющие осуществить решающую проверку теории струн.
Этот тупик привел к печальному расколу физического сообщества. Теория струн предъявляет к исследователю большие требования. Очень мало теоретиков, работающих над другими проблемами, имеют достаточный запас знаний, чтобы понять технические детали в статьях по теории струн. В то же время, мало кто из специалистов по теории струн имеет время на изучение других разделов физики, особенно экспериментальной физики высоких энергий. Реакцией многих моих коллег на эту невеселую ситуацию явилась определенная враждебность по отношению к теории струн. Я не разделяю этих чувств. Теория струн представляется на сегодняшний день единственным кандидатом на окончательную теорию – как же, в таком случае, можно надеяться, что многие блестящие молодые теоретики откажутся от работы над этой теорией? Конечно, жалко, что теория пока что оказалась не слишком успешной, но, как и все остальные ученые, специалисты по струнам прилагают максимум усилий, чтобы преодолеть очень трудный период в истории физики. Мы просто обязаны надеяться на то, что либо теория струн приведет к более осязаемым результатам, либо новые эксперименты приведут к прогрессу в других направлениях.
К сожалению, никто еще не сумел построить конкретную теорию струн, включающую все пространственно-временные и внутренние симметрии и тот набор кварков и лептонов, который наблюдается в природе. Более того, мы даже до сих пор не знаем, как перечислить все возможные теории струн или узнать их свойства. Для решения этих проблем, похоже, нужно разработать новые методы вычислений, далеко выходящие за рамки тех методов, которые так хорошо работали в прошлом. Например, в квантовой электродинамике мы можем рассчитать эффект обмена двумя фотонами между электронами в атоме как малую поправку к эффекту обмена одним фотоном, а затем рассчитать эффект обмена тремя фотонами как еще меньшую поправку и т.д., прекратив это вычисление, как только оставшиеся поправки станут пренебрежимо малы. Такой метод вычислений называется теорией возмущений. Однако главные проблемы теории струн связаны с обменом бесконечным количеством струн, так что их нельзя решить методом теории возмущений.
Б186
Действительно, теорию струн можно рассматривать как теорию частиц, отвечающих различным модам колебаний струны, но из-за бесконечно большого числа сортов частиц в любой струнной теории она отличается от обычных квантовых теорий поля. Например, в квантовой теории поля испускание и обратное поглощение одного сорта частиц (скажем, фотона) приводит к бесконечному сдвигу энергии – в правильно сформулированной теории струн эта бесконечность сокращается благодаря эффектам испускания и поглощения частиц, принадлежащих бесконечному числу других типов.
Б187
Эта несогласованность в теории струн была чуть ранее обнаружена Виттеном и Луисом Альварес-Гауме.
Б190
Конформная симметрия основана на факте, что при движении множества струн в пространстве, они заметают в пространстве-времени двумерную поверхность. Каждая точка на поверхности имеет метку, задающую момент времени, и другую метку, определяющую координату вдоль одной из струн. Как и для любой другой поверхности, геометрия этой заметенной струнами двумерной поверхности описывается выражением для расстояния между любой парой очень близких точек, записанного через координатные метки. Принцип конформной инвариантности утверждает, что уравнения, управляющие движением струн, сохраняют свою форму, если мы изменим способ измерения расстояний, умножив все расстояния между какой-то точкой и любой соседней точкой на величину, произвольным образом зависящую от положения первой точки. Конформная симметрия необходима потому, что в противном случае колебания струны в направлении оси времени приведут (согласно одной из формулировок теории) либо к отрицательным вероятностям, либо к нестабильности вакуума. При наличии конформной симметрии эти времениподобные колебания могут быть устранены из теории преобразованием симметрии, и поэтому безвредны.