Выбрать главу

Нерешенные проблемы и пробелы

Осложнения: больше материала

Наиболее решительно анализ и синтез, или редукционизм, осуществляется на больших ускорителях, таких как Большой андронный коллайдер (БАК) в Европейском центре ядерных исследований (ЦЕРН). Протоны в нем разгоняются до огромных энергий, а потом им дают столкнуться. При этом кратковременно создается плотность энергии, далеко превосходящая все, что происходит естественным образом на Земле (как, насколько мы знаем, где‑либо еще в современной Вселенной). Это позволяет проверить теории фундаментальных взаимодействий в условиях гораздо более тяжелых, чем встречающиеся в обычной практике.

У наиболее заметного результата этой работы есть два важных для наших целей аспекта.

Для начала плохая новость: наша «эффективная теория» оказывается весьма неполной. Чтобы получить хорошее описание всех обнаруженных на ускорителях явлений, следует добавить еще четыре вида кварков (странный s, очарованный с, прелестный b и истинный t), две тяжелые электроноподобные частицы (мюон µ, тау‑лептон τ), каждая из которых вдобавок вводит собственное нейтрино, двоих тяжелых родственников фотона и глюона (W— и Z‑бозоны) и, наконец, недавно обнаруженный бозон Хиггса.

Смысл плохой новости в том, что столь близкое рассмотрение реальности приводит к неожиданным осложнениям.

Теперь хорошая новость: эти осложнения лишь укрепляют принципы эффективной теории и не ставят под угрозу ее практическое применение. Изучение новых частиц предоставляет массу новых способов проверки общих принципов, лежащих в основе нашей эффективной теории — теории относительности, квантовой теории и локальной симметрии. Действительно, эти принципы предсказывают доли, в которых различные частицы будут производиться при разных условиях, то, на что они будут распадаться, и многое другое. До сих пор прогнозы — все без исключения — подтверждали правильность нашего описания реальности.

Таким образом, мы можем с определенной долей уверенности предположить, что последствия влияния этих частиц на земную среду в обычном (без ускорителя) режиме незначительны.

Смысл хорошей новости в том, что добавляемые элементы легко количественно определить и без нашей эффективной теории. Их наблюдаемое поведение усиливает обоснованность общих принципов. Но их очень трудно производить, и по большей части (за исключением новых нейтрино) они крайне нестабильны. Впрочем, их практическое влияние почти наверняка будет незначительным.

Квантовые сомнения и квантовая гравитация

Многие из пионеров квантовой теории — в частности, Планк, Эйнштейн и Шредингер — были недовольны ее зрелой формой. Им не нравилось пользоваться вероятностными прогнозами, а также упорствованием этих теорий в том, что в субатомном мире «идеальные» измерения — то есть измерения, не влияющие на измеряемую систему, — являются даже не идеализацией, а физической, объективной невозможностью. Эти особенности квантовой теории, похоже, подрывали представление о существовании объективного мира, содержащего объекты с определенными свойствами, которые эволюционируют согласно определенным принципам.

Более поздние поколения физиков по большей части примирились с квантовой теорией. Она привела к появлению многочисленных новых достижений и сумела пережить массу проверок. Кроме того, техническая работа над понятием «декогеренция» прояснила, каким образом стабильное и по существу детерминированное поведение тел в макромире возникает из квантового поведения в микромире. Впрочем, и сегодня некоторые высококвалифицированные физики с трудом воспринимают основы квантовой теории (я к этому числу не принадлежу). При проектировании квантовых компьютеров активно используются самые странные и сложные свойства этой теории. Было бы весьма любопытно, если бы они неожиданно потерпели неудачу.

Поскольку сложность, в частности, полного примирения теории гравитации и общей теории относительности с принципами квантовой механики все же сильно преувеличена, важно спустить эту дискуссию с небес на твердую землю. На практическом уровне проблем нет. Астрофизики и космологи регулярно и успешно рассчитывают развитие физических ситуаций, в которых одновременно действуют гравитационная и квантовая теории. В процессе всей этой работы не возникает никаких существенных неоднозначностей или исключений.