Выбрать главу

Представителем Александрийской школы был римский архитектор эпохи Августа — Марк Поллион Витрувий (1 в. до н. э.). Десятая книга его знаменитого трактата «Об архитектуре» целиком посвящена механике. Витрувий был строителем-практиком. Поэтому механическая часть его трактата содержит главным образом описание различных механизмов для поднятия тяжестей, а также практических правил и строительных рецептов. Специальный раздел посвящен военным машинам. Витрувий дает следующее определение машины: «Машина есть сочетание соединенных вместе деревянных частей, обладающее огромными силами для передвижения тяжестей»{39}.

В 8-й главе X книги трактата рассматривается принцип действия механизмов, основанный на теории равновесия рычага, которую Витрувий излагает согласно «Механическим проблемам» и Герону, придерживаясь, таким образом, кинематического варианта статики.

Механике посвящена и последняя (VIII) книга «Математического собрания» Паппа Александрийского (III в. н. э.). Папп проводит в ней различие между механикой — теоретической наукой и механикой — практическим искусством. Сочинение Паппа представляет собой в основном компилятивный труд, в который включены разнородные сведения из различных источников. В книге приведено большое число отрывков из сочинений Архимеда, некоторые теоремы геометрической статики, относящиеся к определению положения центров тяжести различных фигур, главным образом трапеции и треугольника. Папп рассматривает приложение геометрической статики к конкретным техническим вопросам, например задачу об определении силы, необходимой для того, чтобы на наклонной плоскости сдвинуть груз, который на горизонтальной плоскости сдвигается данной силой. С другой стороны, в трактат включено описание устройства грузоподъемных машин из «Механики» Герона, однако без изложения принципа их действия.

В книге содержатся и собственные исследования автора, например теоремы об объемах тел вращения, которые он выражает через длину окружности, описываемой центром тяжести вращающейся фигуры (теорема Паппа — Гюльдена).

Сочинения Герона и Паппа показывают, что александрийские ученые I—IV вв. н. э. уделяли значительное внимание как теоретическим основам механики (хотя научный уровень их работ был значительно ниже, чем у Архимеда), так и практической механике, конструированию механизмов, оружия и автоматов.

Одним из основных стимулов разработки принципов кинематики и источников развития кинематических представлений в механике была греческая астрономия.

В вавилонской астрономии положения светил на небесной сфере вычислялись арифметическими методами.

Как мы уже упоминали, представители греческой классической философии (Платон, Аристотель) считали круговое движение, свойственное небесным телам, «совершенным». Поэтому греческие астрономы, обращаясь к кинематико-геометрическому моделированию видимых движений небесных тел, представляли эти сложные движения только в виде комбинации нескольких круговых. Первая попытка такого моделирования — теория вращающихся концентрических сфер, предложенная крупнейшим античным математиком и астрономом Евдоксом Книдским (IV в. до н. э.). Теория Евдокса состоит в следующем: вокруг центра, в котором находится покоящаяся Земля, вращаются 27 концентрических сфер. На внешней сфере расположены «неподвижные» звезды. С помощью остальных сфер Евдокс объясняет движение Солнца, Луны и пяти планет. Каждое из упомянутых небесных тел неразрывно связано с некоторой равномерно вращающейся сферой, объемлющей другую, ось которой находится под известным углом к оси первой. Внутренняя вращающаяся сфера увлекается в своем вращении внешней.

Движение Луны описывается с помощью трех сфер. Внешняя сфера Луны, на которой расположена эклиптика, служит для объяснения суточного движения Луны. Она, как и сфера «неподвижных» звезд, совершает один оборот в сутки вокруг полюсов экватора.