Выбрать главу

Очень образную характеристику педагогов-математиков дал Крылов в своем выступлении о значении математики для кораблестроителя{315}. Он уподобил геометра «некоему воображаемому универсальному инструментальщику, который готовит на склад инструменты на всякую потребу», который «делает все, начиная от кувалды и кончая тончайшим микроскопом и точнейшим хронометром». Когда инженер приходит на такой грандиозный склад, он видит ряд, «видимо, издавна систематически подобранных ассортиментов, остающихся почти неизменными в течение 150 лет», к тому же и кладовщик подтверждает, что «их так часто требуют, что и не напасешься, а за остальным заходят лишь знатоки — мастера и любители». «Кладовщики и инструментальщики» — это профессора, а «систематические ассортименты» — это курсы.

В этом образном сравнении ярко отразился взгляд Крылова на математический аппарат естествознания как некую совокупность инструментов, находящих в умелых руках разнообразное и зачастую неожиданное применение. Крылов ставил в заслугу Лагранжу, что своему изложению тот придал самую общую аналитическую форму, поэтому его методы «одинаково приложимы и к расчету движения небесных тел, и к качаниям корабля на волнении, и к расчету гребного вала на корабле, и к расчету полета 16-дюймового снаряда, и к расчету движения электронов в атоме»{316}. Точно так же «вид дифференциальных уравнений, рассмотренных Эйлером, настолько общий, что подобного рода уравнения, но гораздо более простые, встречаются во множестве прикладных и технических вопросов»{317}.

Подобная способность усмотреть на «универсальном складе» нужный инструмент и притом не только оценить его применительно к одной какой-нибудь в данный момент поставленной цели, но понять его во всей широте возможных применений отличала в значительной мере самого Крылова. Если в своих «Воспоминаниях», как мы уже видели, он подчас слишком односторонне и прямолинейно связывал свои ньютоноведческие исследования с решением какой-то одной практической или педагогической задачи, то в других случаях умел показать теоретическую широту математических и механических проблем, охватывающих много практических приложений. Он писал, например, о себе, что в 1895 г. разработал теорию килевой качки на волнении, применив методы, подобные тем, которые применяли Лагранж и Лаплас при изучении движения планет{318}. В «Воспоминаниях» он рассказывает, что случайно ему на глаза попался громадный том Биркеланда «Наблюдение северных сияний». Помещенная в нем статья норвежского ученого К. Штермера «Теория северных сияний» заинтересовала Крылова изложенным методом приближенного интегрирования дифференциальных уравнений. «Работу Штермера я изучил самым основательным образом, сопоставляя с работами Адамса и Башфорда о капиллярных явлениях, и развил как для курса Военно-морской академии, так и для других целей, например для вычисления траектории снарядов в ряде работ»{319}.

Теоретически и практически важные проблемы и их решение — вот что прежде всего привлекало внимание Крылова в классических произведениях прошлого. Мы видели, что именно с этих позиций он подходил к трудам Ньютона, не только дав их истолкование, но и восстановив ряд утраченных звеньев.