Одним из наиболее важных результатов механики была теорема об эквивалентности равномерно ускоренного движения (и вообще изменения) равномерному движению (изменению) со средней скоростью.
Формулировка этой «мертонской теоремы» такова: «Всякое униформно-дифформное изменение, начинающееся с не градуса (нуля), эквивалентно униформному изменению со средним градусом», т. е. в ускоренном движении, начинающемся из состояния покоя, пройденное расстояние s равно vt/2, где v — скорость в рассматриваемый момент времени.
Различные доказательства этой теоремы содержатся в упомянутых трактатах Хейтесбери, Суисета, Дамблтона и относятся к 1330—1340 гг.
Доказательство Хейтесбери начинается следующим утверждением: «Каждое приращение скорости, униформно приобретаемое или теряемое, отвечает средней скорости. Это предполагает, что движущееся тело униформно приобретает или теряет такие приращения, что за данное время проходит расстояния, в точности равные тем, которые оно прошло бы, двигаясь в то же время со средней скоростью». Это утверждение доказывается с помощью рассмотрения симметричных приращений и «потерь» скорости над ее «средним градусом». В своем доказательстве Хейтесбери исходит из свойства непрерывной пропорции a : b = b : c = (a – b) : (b –c) и применяет его к делению на «пропорциональные части» в отношении 2:1; так как первая «пропорциональная часть» равна сумме всех последующих, то разность между первым и вторым членами равна сумме всех последующих разностей. Поэтому, если взять в униформно-дифформной широте «градусы», убывающие в пропорции 2:1, то разность между высшим и средним (вдвое меньшим) «градусами» будет равна сумме разностей («широт») менаду средним «градусом» и «не градусом», т. е. 1/2 = 1/4 + 1/8 + 1/16 + … Далее Хейтесбери замечает, что аналогично можно доказать эквивалентность униформно возрастающей «широты» движения среднему «градусу». Таким образом он приходит к следствию, что тело, двигаясь равномерно замедленно со скоростью, убывающей до нуля, проходит в первую половину времени втрое большее расстояние, чем во вторую, т. е. что при униформном убывании «градусов движения» (т. е. скоростей) на первую половину времени приходится расстояние, втрое большее, чем на вторую.
Суисет приводит четыре различных доказательства этой теоремы, которую он формулирует следующим образом: «Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу… так что столько же в точности будет пройдено благодаря этой так приобретаемой широте, сколько и благодаря ее среднему градусу, если бы тело двигалось все время с этим средним градусом».
Наиболее интересное из них — третье доказательство, которое проводится с помощью суммирования двух бесконечных рядов. Суисет исходит из деления интервала времени на «пропорциональные части» t, t/2r t/4, t/8, …, t/2n-1. В любой момент первой «пропорциональной части» времени тело будет двигаться вдвое быстрее, чем в соответствующий момент второй «пропорциональной части», и т. д. Поскольку первая «пропорциональная часть» времени вдвое больше, чем вторая, то тело пройдет за первую часть вчетверо большее расстояние, чем за вторую, за вторую — вчетверо большее, чем за третью, и т. д.
К задаче суммирования ряда Суисет сводит и примеры движений, в которых скорость меняется скачкообразно.
Представителю геометрического направления в науке XIV в. — Н. Орему (1323—1382) — принадлежит сохранившийся в многочисленных списках (и под различными заголовками) трактат «О конфигурации качеств», написанный в 1371 г.
Орем представлял «интенсивность качества», сосредоточенного в одной точке, в виде отрезка прямой линии. «Качества» могут быть линейными, когда они распределены по различным точкам математического объекта в одном измерении, плоскостными (два измерения) и объемными (три измерения). «Интенсивности» он предлагал изображать линиями, проведенными из точек прямой, характеризующей «экстенсивность». В современной терминологии «экстенсивность качества» соответствует абсциссе, «интенсивность» — ординате. Отрезки линий «интенсивности» Орем называл «широтами» (latitudo) «качеств» или «форм», а отрезки, в концах которых «широты» прилагаются, — «долготами» (longitudo). Длины «широт» пропорциональны «интенсивностям». Таким образом, зависимость между «интенсивностью» и «экстенсивностью» изображалась в виде плоской фигуры, ограниченной сверху некоторой кривой.
Постоянная «интенсивность» соответствует «униформному качеству», которое изображается четырехугольником. «Униформно-дифформному качеству» соответствует треугольник (если это «качество» в начальной или конечной точке равно «не градусу», т. е. нулю) или четырехугольник с двумя непараллельными сторонами. Эту геометрическую интерпретацию Орем применяет для разъяснения кинематических понятий. В этом случае время рассматривается как «экстенсивность», а скорость — как «интенсивность» движения. Понятие ускорения (velocitatio) Орем вводит как «интенсивность» скорости, а затем переходит к рассмотрению различных случаев как постоянного, так и переменного ускорения. Орем пользовался и понятием мгновенной скорости, которую называл точечной (velocitas punctualis).