Выбрать главу

Живя на уютной Земле, мы редко задумываемся над тем, какое место занимает наша планета во всей вселенной и что представляет собой солнечная система. Но уже начавшаяся космическая эра настоятельно побуждает нас, в том числе и тех, кто непосредственно не связан с космонавтикой, обращать свои мысленные взоры за пределы Земли. И что же мы видим?

Сразу же за тонкой земной атмосферой начинается бездна космоса. Планеты, их спутники и даже звезды — совсем крохотные образования вещества по сравнению с этой бездной почти абсолютной пустоты.

Представим себе солнечную систему, уменьшенную в 2 миллиарда раз. Диаметр ее составит всего четыре с половиной километра. Огромное Солнце станет небольшим шаром диаметром 70 сантиметров, а планеты будут еще меньше. Меркурий и Марс превратятся в зернышки, Земля и Венера — горошины. Уран и Нептун покажутся грецкими орехами, а гигантские Сатурн и Юпитер — яблоками средней величины. Отделять эти зернышки и горошины друг от друга будут многие десятки и сотни метров пространства. Расстояние же между Ураном и Нептуном, самыми удаленными от Солнца планетами, которые на нашей уменьшенной модели выглядят грецкими орехами, достигнет почти километра.

Таким образом, на пространстве в 16 квадратных километров будут размещены несколько зернышек, горошин, орехов и яблок, а также золотистый шар, достигающий размеров мяча, которым играют в мотобол. Вот и все, что приходится на долю вещества, остальное занимает космическое пространство.

Картина солнечной системы, образно нарисованная Константином Эдуардовичем Циолковским, помогает отчетливо представить громаду космоса и наше очень скромное место в нем. Но, несмотря на столь, казалось бы, незаметное положение, люди уже начали великий штурм мироздания, посылая плоды своего разума и творения своих руд как к ближайшим, так и отдаленным космическим объектам. Аппараты, созданные на Земле, достигают не только Луны. Но и Венеры, Марса, Юпитера.

Если до Луны корабль летит всего трое суток, то время достижения Венеры и Марса измеряется уже многими месяцами, а полет к Сатурну и Юпитеру занимает годы. Между тем космическое пространство — не слишком уютно для путешествий. Там царит ледяной холод, но сторона корабля, повернутая к Солнцу, сильно нагревается. Такие температурные контрасты действуют самым отрицательным образом на материалы, из которых изготовлен космический аппарат.

Не идут на пользу кораблю и частицы космической пыли, щедро рассыпанной по всему пространству вселенной, через которую летательному аппарату нередко приходится ”проди- раться”. Вредна и космическая радиация. Казалось бы, чем может вредить пустота — космический вакуум, огромнейшее безвоздушное пространство? А между тем, вакуум далеко не безобиден.

Эксперименты, проведенные учеными, помещавшими самые различные металлы в специальную вакуумную камеру, позволили обнаружить любопытные факты. В камере искусственно создавали разрежение, соответствующее тому, которое царит на расстоянии 800 километров от поверхности Земли. И оказалось, что глубокий вакуум действует на металлы очень своеобразно: кадмий, цинк, магниевые сплавы . .. закипают и испаряются, многие другие металлы, хотя и в меньшей степени, но тоже начинают терять свои собственные атомы. Самыми устойчивыми в вакууме оказались сталь и титан, а также вольфрам и платина. Менее устойчив, но еще достаточно надежен алюминий. Остальные металлы мало пригодны для эксплуатации в открытом космосе.

Эти эксперименты были проведены сравнительно недавно — уже после того, как титан стали применять в космической технике. Тогда, разумеется, не знали, что новый металл очень устойчив в вакууме, но и без того у титана имелось немало достоинств, которые и определили быстрый рост его применения в космической технике.

С каждым запуском кораблей серии "Аполлон” в межпланетное пространство стартовали более 60 тонн титановых сплавов. Узлы и детали из сплавов титана использовались не только в самом корабле "Аполлон”, но и в лунном модуле, и в трехступенчатой ракете-носителе ”Сатурн-5”, которая выводила космических путешественников на траекторию полета к Луне.

На космическом корабле ”Аполлон” насчитывается около сорока титановых емкостей, предназначенных для хранения химически активных веществ, входящих в состав горючего. В частности, в титановых баках хранятся монометилгидразин, используемый как топливо, тетраксидазот, применяемый в качестве окислителя, и жидкие газы — кислород, водород, азот и гелий. Воздух, который служит для вентиляции кабины в космических полетах, содержится в титановых цилиндрах под давлением, превышающим 200 атмосфер.