Криогенные температуры начинаются с температуры жидкого азота. Но какого предела они достигают? Абсолютного нуля — минус 273,16 °С. Более низкой температуры в природе не бывает. Почему? Потому что именно при этой температуре молекулы прекращают свое движение, их кинетическая энергия равна нулю.
А ведь та или иная температура не что иное, как уровень кинетической энергии вещества.
Практически достичь абсолютного нуля невозможно, но можно максимально приблизиться к нему. Сейчас только сотые доли градуса отделяют исследователей от него. А температуры, отличающиеся от абсолютного нуля в несколько граду-
сов, были достигнуты еще в самом начале нашего века. Жидкий гелий имеет температуру минус 263—269 °С. Впервые его получил голландский физик Гейке Камерлинг-Оннес в 1911 году.
Вполне понятно, что, едва получив столь необычное вещество, голландский профессор принялся экспериментировать с ним. Один из опытов заключался в том, что ученый погружал в необычный гелий различные вещества и измерял их электросопротивление. При проведении именно этого опыта и было обнаружено явление, названное Камерлинг-Оннесом сверхпроводимостью.
Некоторые металлы, погруженные в жидкий гелий, совершенно утрачивали электрическое сопротивление. Происходило это скачком, резко, мгновенно. Вещества как бы становились совершенно другими, непохожими на себя. Сейчас установлено, что способностью к сверхпроводимости обладают 26 чистых металлов и большое количество сплавов и соединений. Среди них и титан, который как известно, обычно плохо проводит электрический ток.
В начале века сверхпроводимость не имела никакого практического значения, однако в наши дни она, как и вся криогенная техника, играет важную роль в дальнейшем научно-техническом прогрессе.
Большие успехи достигнуты в деле разработки быстродействующих сверхпроводящих переключателей, так называемых криотронов, предназначенных для использования в новейших электронно-вычислительных машинах. Прежде прогресс электроники связывали исключительно с полупроводниками, ныне — со сверхпроводниками.
Для накапливания энергии от маломощного источника тока с целью мгновенного ее разряда очень удобны сверхпроводящие соленоиды. С помощью сверхпроводников создают устройства для усиления сигналов. Широко изучается вопрос о возможности создания сверхпроводящих линий электропередач, кабели которых должны охлаждаться жидким гелием.
Западногерманская фирма ”АЭГ-Телефункен” провела сравнение технико-экономических показателей трех линий электропередач постоянного тока. При этом все три линии имели одинаковую электроизоляцию и один диаметр, различались только проводящими материалами. В одном случае это была чистая медь, нагретая до 70 градусов, в другом — чистый алюминий, охлажденный жидким водородом до минус 253 градусов, и, наконец, в третьем — сверхпроводящий сплав ниобий-титан, охлажденный жидким гелием. Оказалось, что кабели из сверхпроводящего сплава смогут передавать энергию, по мощности впятеро большую, чем медные и алюминиевые.
Эффективность таких сверхпроводящих линий тем выше, чем больше передаваемая мощность, поэтому они будут незаменимыми при передаче мощности 3000000 киловатт и выше. При передаче такой мощности стоимость оборудования и эксплуатации сверхпроводящего кабеля гораздо ниже стоимости обычных проводников.
Разрабатываются мощные турбогенераторы со сверхпроводящей обмоткой возбуждения, охлаждаемой жидким гелием. Роторы таких турбогенераторов должны обладать не только высокой удельной прочностью и хорошей коррозионной стойкостью, но и хладостойкостью, низкой теплопроводностью, немагнитностью. Титановый сплав, созданный в Институте металлургии АН СССР, отвечает всем требованиям и сохраняет свою пластичность даже при температуре жидкого гелия. Испытания сплава подтвердили его полную пригодность как материала для роторов именно таких турбогенераторов.
ГОРИЗОНТЫ ТРАНСПОРТА БУДУЩЕГО
Замечательные свойства титана — легкость, прочность, высокая стойкость против коррозионного разрушения — в полной мере проявляются при использовании нового промышленного металла не только в авиации, но и в наземных видах транспорта — на железных дорогах, в автомобилях, морских и речных судах.
О применении нового конструкционного материала в военно- морском флоте уже рассказывалось. Те же преимущества даст этот металл, если его использовать не только для военных кораблей, но и для нужд торгового и рыболовного флота. В результате повысятся дальность плавания и маневренность судов, будут значительно сэкономлены средства, затрачиваемые на ремонт материальной части и уход за нею. Корпуса судов, обшитые листами титана, совершенно не будут нуждаться в окраске. Высокая стойкость титановых сплавов в движущейся воде делает их наилучшим материалом для подводных крыльев и стоек.